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@ Unit - IV

Partial Differential Equations (PDE)

41| Introduction

Many problems in vibration of strings, heat conduction, electrostatics myplve two or
more variables. Analysis of these problems leads to partial derivatives and equations
involving them. In this unit we first discuss the formation of PDE analogous to that of
formation of ODE. Later we discuss some methods of solving PDE.

4.2 Definitions

An equation involving one or more partial derivatives of a function of two or more
variables is called a partial differential equation.

The order of a PDE is the order of the highest derivative and the degree of the PDE is
the degree of highest order derivative after clearing the equation of fractional powers.

A PDE is said to be linear if it is of first degree in the dependent variable and its partial
derivatives.

If each term of the PDE contains either the dependent variable or one of its partial
derivatives, the PDE is said to be homogeneous . Otherwise it is said to be a
nonhomogeneous PDE.

Examples
1 G + % _ 0 [order = 1, degree = 1, homogeneous PDE]
T Ox dy - ldegree =1, &
¥z
2. 3% 3y =xy [order =2, degree = 1, nonhomogeneous PDE]
3 & _ % + 2z [order = 2, degree = 1 homogeneous PDE]
el Ty ' '
Pz ¥y

4 — + E}F =0 [order = 2, degree = 1, homogeneous PDE]
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13| Formation of PDE by eliminating arbitrary constants and
arbitrary functions

Given a relation of the form f(x, y, z, a, b) =10 where z is a function of x, y
and a, b are arbitrary constants, we differentiate the given relation w.rt x and y
partially and eliminate the arbitrary constants 4, b to form the PDE. In case the number
of arbitrary constants are more than the number of independent variables we need
appropriate number of partial derivatives of second and higher order also.

Suppose z is a function of two arbitrary functions we have to find partial derivatives
upto the second order and use the necessary partial derivatives of the second order to
form the PDE by eliminating the arbitrary functions.

Note : The following standard notations when z is a function of two independent variables
x, y will be used.

_ % _ __ Pz _ oz _
Pra ™% 179 % TERE T Bex ST oy “xy

WORKED PROBLEMS

Form the PDE by eliminating the arbitrary constants in the following

1. z=(x+a) (y+bH)

>> By data, z=”(x+a)(y+b) (1)
Differentiating partially w.rt x and y,

P=a—=(y+b) (2)
q=§—;=<x+a> )

Using (2) and (3) in (1) we obtain z = pg
Thus =z = pg is the required PDE

2 2
"\
2. 22= 5 + 5
a b
2
>> By data, 2z=%+§ : )
a

Differentiating (1) partially w.r.t xand y,
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dz 2x 2 X
2 _ = 2 = — = -
3% » 2 or a ”

dz 2y 2 Y
2—==2g== or ¥V =
™ q

Using (2) and (3) in (1) we obtain
- 2. P 4
27 = ¥ . + y‘z Y

Thus 2z = px+qy is the required PDE.

3. ax2+by2+22 =1

>> By data, =1 —uxz—byz
Differentiating (1) w.r.t x and y partially,
0z

2z —=2zp=-2ax .. a=-

ox

226—2=22q=—25y wb=-

dy
Using (2) and (3) in (1) we obtain,

2 _q 4 2P z4q
z—1+xxz+y’]/2

Thus (zz—l) = z(px+4qy) is the required PDE.

1 z = a log (x2+yz)+b

>> Bydata, z = 7 log (x2+y2)+b

—_— = = 2x Or

ax P Jc2+y2

E— = 4 2y or gq-=
Y 1 x2+y2

Dividing (2) by (3) we get IZ— = 5

Thus py-gx = 0 is the required PDE.

@)

.. {3)

..(3)

- e e e e o e e o W =
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5. Find the PDE of the family of all sphercs- whose centres lie on theplane z = 0 and
hawve a constant radius 'r’.

>> The co-ordinates of the centre of the sphere can be taken as (a, b, 0) where 2 and
b are arbitrary. r is the constant radius.

The equation of the sphere is given by
(x—al+(y-bY+(z-072 =7
ie., (x—aP+({y-bY+F =7 (D
Here 2 and b are arbitrary constants and have to be eliminated.
Differentiating (1) w.r.t x, y partially,
2(x-a)+2zp =0 and 2(y-b)+2z9g=0
Dividing these equations by 2 we obtain
(x—a)=-zp and (y-b)=-2zq
Substituting these in (1) we get, (—zp)2+(—zq)2+z2 = 7
Thus 22 (P +4 +1) = ¥ is the required PDE.

C
§+~§+Cé=1 o AD

>> By data,

Differentiating (1) partially w.r.t x and y,

X +EE -0 )

ie.,

C2
Y 21 _ g 3

Differentiating (2) w.r.tx partially again, we get

1 1 ps
=+ 5 (zr+pT) =0 .. (4)
P P

dp_ 0 () 2z _,
ox  ox h
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x zp 1 -zp
Now from (2}, 5 = - =L or — =
a° ¢ @ Px
Substituting this in (4) we get,
%E=_—21(zr+p2) or zp=x(zr+p2)
cx c
2
Thus =z i =xz 22'5- + x 9z is the required PDE.
ox I ox

Note : Differentiating (3) w.r.t y and using the expression for 1/ b% we can also obtain

2

thePDEasza—z=yz§2—i+y a_z]
dy dy

7. z=ay+y Nal—a’ +b

>> By data, z = xy+y N —a® + b (1)
Differentiating (1) w.r.t x and y partially,

oz 1 Xy

o PV S E T TV 22
and %zq:x+Vx2—a2 o (3)
Now from (3} (g—~x) = Vx> —a®  and using this in (2) we have,

- XY

p=y+ q-x

ie, (p-y) ==L o (p-y) (g-x)=xy
qg—x

Thus pg = x p+y g is the required PDE.

Ferar the PDE by climinaling e arbitvary functions in the following,

L f (‘\;)fa/‘j‘)
>> Bydata, z = f(x’+y°) (D)
Differentiating (1) partially w.r..t x and y, we have
_gz: = (P+) - 2 o (2)
x
dz .2
=== 2 )

8y_
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X

Dividing (2) by (3) we have % = " or py =4x

Thus py — gx = 0 is the required PDE.

1
9. z = y2+2f£1l + logy]

>> Bydata, z = y2+2f(% + logyJ

Differentiating partially w.r.t x and y we have,

2 (1 -1
P =2f [x+logy][l2}
(1 1
@=q=2y+2f (x+logyj(y)
ie., px® = =2f (% + logyJ
L1
(9-2y)y = 2f [;+1OgyJ

Now dividing (2) by (3) we have

2
S L ¥ = —gy+2
(9-2y)y oy 1Y+2

Thus p 2+ qy = 2y” is the required PDE.

10. z=¢"f(x+y)

__a_z__ — ) ’

P =& f'(x+y)

dz v y

@=q-,.f~ fAx+y)+f(x+y)e
ie., g=¢f (x+y)+z

or g—z =&/ f' (x+y)

Dividing (2) by (2) we obtain
=1 o
g-z

Thus p+z = g is the required PDE.

p=gq-z

(1

@)

)

.. (3)
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1. z = ¥ Hby flax-by)

>> Bydata, z = e”x+byf(ax—by) )
% =p =W (ax-by) . a+ae™ W flax—by)
§§= §= &Y [ (ax~by) - (=b)+b™ Y flax—by)

ie., p=ae“x+byf’(ax—by)+z_12- - (2)
q='—be“x+by f(ax-by)+bz ... (3)

Multiplying (2) by b, (3) by 4 and adding we get bptag=2abz

Thus b%i*+ka—g—;=2abz is the required PDE.

2. Ix+my+nz = ¢ (3‘2+y2+zz)

>> Bydata, Ix+my+nz = ¢ (xz+y2 +zz)
Differentiating partially w.rt x and also w.r.t y we have,

I+np = 0" (P +yP+22) - (2x+22p) ..{)
ming =0 (C+1P+22) - (2y+2z4) @)
Dividing (1) by (2) we get,
I+np  x+zp
m+ng  y+z4 :
ie. (x+zp) (m+ng) = (y+zqg) (I+np)
We shall muitiply and simplify this equation.

Thus  (mz-ny)p+(nx—-lz)q = ly—mx is the required PDE.

Note : To form the PDE from ¢ (u, v) =0 where u and v are fuhctions of
X, Y, 2,(z being a function of x, y) we proceed as follows.

Bydata ¢ (u, v) =0 ... (1)
Differentiating (1) w.r.tx and y partially by applying chain rule we obtain

3 u 9 dv _

du ox T owoax " @
and 9 ou @QE—O .. (3)

du oy * dy

Transferring the second term in both (2) and (3) onto the R.H.S and dividing we
obtain the required PDE.
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13 o {xv+y+z, x2+y2—:2) =0
>> We have by data

o (u, v)=0 (D)
where # = x+y+z and v = 352+y2—z2
du dz dv 0z
Now, ax-—1+ax—1+p, ax—Zx—zzax—Z(x—zp)
ou dz dv gz
ay_ +ay—1+q, ay—Zy—Zz ay—2(y—zq)
Let us differentiate (1) w.r.t x and y by applying chain rule.
- 9 du 3¢ v _ o du _ 9 %
o wm Tawar 0 % dwax v ox @
99 du ﬁ dv _ 3¢ du _ 3¢ dv
and ou ay du dy 0 or ou dy  dv dy - 6)
Dividing (2) by (3) we obtain,
du
/___._ ==
dy 9y

ie. 1:2%2;:2’;; or (1+p)(y=29) = (1+g)(x=2p)
ie, Y—zgtpy—pgz =Xx-zp+gx-—pqz

ie, py+pz—gx—g4z =x-y

Thus p(y+2z)—g(x+2z) = x—y is the required PDE.

14. ¢)(11j+ , yhy+ =0
>> Wehavebydata o (u,v)=0 D)
where u = xy+z2 and v = x+y+z
du dv
Now, ax—y+22p, ax—l+p
du dv
- = 2 L= =1
E» xX+2zq; » +q
Let us differentiate (1) w.r.t xand y, by applying chain rule.
ie., 99 9 jlav—() or Q@_B_u:_iq_év_ e (2)

du ox av ox ou dx Jv odx
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and @.é@._}a—{pa—vzo or —_— — = e =L (3)

du dy  Jv dy u gy dv oy
Dividing (2) by (3) we obtain,

au du _dv , v
dy o
y+2zp l+p

re., x+22q:1+q or (1+p) (x+2zg) = (1+q) (y+2zp)

Le., X+2zg+px+2pqz = y+2zp+qy+2pgz
Thus p{x-22)—q(y-22+(x-y) =0 is the required PDE.

15. f( X+ 2yz, y2 +2zx}y =4
>> We have by data,

f(u,v)=20 .. (1)
where u=x2+2yz and v=y2+22x o {2)
Differentiating (1) partially w.r.tx and y by applying chain rule we have,

S, Fo_g oy FH__F .. 03)

w x ' dv ox du dx dv Ox

o du  Of dv _ O du __ 9o %
and ou 8}/ dv dy 0 or du dy ov dy )
Dividing (3) by (4) we obtain,

du , du

ax/g}; ax/ -+ )
From (2} we obtain,

du du

Pl 2x+2yp Pl 2(z+xp)

du

o
=2(yg+z) ; = 2y + 2x
ay Y9 3y Y q

Hence (5) becomes,

2(x+yp) _ 2(z+xp)
2(yg+z) 2(y+xq)

or xy+x2q+y2p+xypq = yzq+xypq+z2+x2p
Thus (yz—zx)p+(x2.—yz)q = (zz—xy) is the required PDE.
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16. f(“—zy zj =0

>> This problem is similar to the earlier three problems. Proceeding on the same
lines the required PDE is '

du ,¢0u dv ,dv
ax/ay_ax dy - )

x
where u = —ZH and v = z.

Hence we have

du z-X dv au | z- dv
—"y[ }; ™ ; —=x|i"”ﬂ}; e

I\
~

ox B 22

Substituting these in (1)} we have, ylz=xp) _
x(z~yq)

= T

ie, xp(z-yq)=yq (z-xp)
Thus xp = ygq is the required PDE.

Nz =yf(x)txd (y)
>> Bydata, z = yf(x)+x0(y) L)

(It should be noted that there are two arbitrary functions and hence we need the second order
partial derivatives also.)

Differentiating w.r.t x and y partially,
0z

5;=P=yf’(x)+¢(y) . (2)
Z () a0 () 3)
ay 1= /C y =

2

2;==’=yf”(x) - (4)
3’z e o’ 5
deay =S =S (5)
¥#z

— = = ” 6
aﬂ x0” (y) (6)

Now from (2), E:%}Ll = f’(x) and from (3), t‘@ =o' (y)
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Using these in (5) we get,
s = PZ0Y) a-flx) o _pXZX9 (Y)Hqy-yf(x)
Y X Xy

xys =px+tqy-[xo (y)+yf(x)]
Using (1) in RH.S we get,

Xys=pxtgy-z or xys+z =pxtqy

T a2

Thus {y£+z=x%+y% is the required PDE.
dx dy dx -~ 7 dy

LI A R ST R

>> Bydata, z = xf1 (x+1)+f, (x+t)

Differentiating partially w.r.t x and ¢, we have

0
izxfl’(x+t)+f1 (x+t)+f) (x+1)
é_ ’ ’
o x fil(x+8)+f/ (x+t)
aZZ r ’ H
5—-2—=xf1 (x+£)+2f (x+E)+£" (x+1)
X .
iz——xf”(x+t)+f’(x+t)+f”(x+t)
oxot 71 t 2
2
%—;=xf1”(x+t)+f2”(x+t)

Now using the RH.S of (4) in (2) as well as in (3) we get,
¥z 2
oy = Ty v 2f (x4 #)
2 TN
&z 0%z ,
xat - 32 +f1 (x+1)

Multiplying (6) by 2 and subtracting from (5) we get
¥z 2z 2

a2 Taxot | 2
¢z Pz e
ax’ oxdt 3y
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19. z = f(y+x)+g(y+2x)
>> Bydata, z = f(y+x)+g(y+2x)

d
p :a—i =f(y+x)+2g¢" (y+2x)

q=g§=f’(y+x)+g’(y+2ﬂ
&z y .
r:‘—Z:f (1/+X)+4g (y‘i'ZX)
ox
N =" (y+x)+287 (y+2x)
b—axay _‘ y ! g y
2
t=*8—2=f”(y+x)+g”(y+2x)
oy

(1)~ 2)willgiveus, r—s =2g¢" (y+2x)
(2)— Gy willgiveus, s-t = g7 (y+2x)
Now dividing {4) by (5) we get,

r_i:Z or r—s =2(s~-t) or r-3s+2t =20
S_

7 2 3> .
Thus .3 g z +2%2 =0 isthe required PDE.

S

200 z =1 (y—2x)+f(2y—x)
>> Bydata, z = f{ (y—2x)+f, (2y - x)

d , ,
P :a_i = -2f"(y-2x)—f," (2y—x)

a 7 rd
g = 53 = £ (y-2x)+2f) (2y~x)

22z
a2 -

ry =

4f" (y—-2x)+£" (2y-x)

== =2f) (y=20) =247 (24-X)

)

)

(@)
.. (5)

(1)
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2

t=%y—§ = £ (y=2x)+4f" (2y-x) .. ()
(1) x 2+(2) will give us, Zr+s =6f" (y-2x) ... (4)
(2) x 2+ @) will giveus 25+ = =3, (y—2x) ... (5)
Now dividing (4) by (5) we get,
Z:‘: = -2 or 2r+5s42t = 0
Thus 2 gi; +5 B?:azy +2 ?;f = 0 is the required PDE.

EXERCISES
Form the PDE by eliminating the arbitrary constants in the following (1 to 3 )
L z=ax+by+ab 2. z:(x—a)2+(y—b)2
3. u=ax+by+cz

4. Find the PDE of the family of spheres having their centers on z-axis
Form the PDE by eliminating the arbitrary functions in the following (5 to 6 )

5 z=x+y+f(xy) . 6. xyz = f(x+y+z)
7. z:f(xy/z) 8. 2= (x+y) f (=)
9. f(x2+y2, z-xy) =0 10. f(xz—xy, x/z) =0
1L f(2/%°, y/x) =0 120z = f(x)+e g(x)
1. f(x+y+z, ¥+ +22) =0 4 z=f (y+2x)+f,(y~3x)
15. z = f(x+iy)+ ¢ (x—iy) 16. z ="f(x+ct) + g(x—ct)
ANSWERS
L z=px+qy+pg 2. p2+q2:4z
3.xa—u+y§§£+za—u=u 4. py =gx
dx dy dy
5. px—qy =x-y 6. x(y-2)p+y(z-x)q=z(x~y)

7. px =4y 8. z=xq+yp
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9 py-qx =y —x° 0. Pp+(222-xy)q = xz
11. px+qy = 3z 12. t =g
B p(y-2)+g(z-x} =(x-Y¥) 14. r+s-6t =10
2
15. r+t =20 16. z, = "z,

(4.4] Solution of PDE

A solution or integral of a partial differential equation is a relation between the
dependent and independent variables satisfying the equation. It is important to note
that the same PDE can have many independent solutions. But the solution of an
ordinary differential equation is unique in the sense that the solution differs only by a
constant. In this article we discuss solutions of partial differential equations of first
order and first degree in the form

f(x, y, z, p, g)=0 (D
(1) Complete solution (integral)

Suppose fix, y, z, a, b) =20 o (2)

is a relation from which the PDE (1) is obtained by eliminating the arbitrary constants
a, b then (2) is called a Complete solution (integral) of the PDE represented by (1).

Referring to Problem - 1 it may be observed that we obtained the PDE z = pg by
eliminating 4 and b from the relation z = (x+a)(y+b). Therefore we can say thal
z = (x+a)(y+b) isacomplete solution of the PDE pg = z

(2) Particular solution (integral)

A solution obtained by giving particular values to the arbitrary constants in a complete
integral is called a particular solution (integral} of the PDE.

Forexample z = (x+2)(y+3) is a particular solution of the PDE pg = z
(3) General solution (integral)

Consider the complete solution F{x, v, z, a, b) = 0. Suppose we assume an
arbitrary relation of the form b = ¢ (a) then we have

F(x, y, z,a, g{a)j: 0 . {3)
Differentiating partially w.r.t 2 we get

OF |, OF dg (4

dn  dg da -

Suppose it is possible to eliminate ‘a” from (3) and (4), the relation so obtained is called
a general solution of the PDE (1).
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Referring to Problem - 1 again, we have z = (x+a)( y+b) and the related PDE is
Pq =z

Suppose that b=24. Then we have,

Z-XxYy-2ax—-ay- 2% = 0, Differentiating partially w.r.t a we get

-2x-y-4a =0 andhence a = ~ (Z_Jc;_y_l

Substituting this valueinz = (x+4) (y+b) where b = 22 we get

_[x_g%tyzﬂy_gm}

™
|

2
1 1 7
z=3 (Zx—y){(y—-2x) or z = ~3 (Zx-y)

ie, (2x-y Y+8z =0 isa general solution of the PDE pg = 2.

(4) Singular solution (integral)

Let us consider the complete solution (2) of the PDE (1)

ie, F(x.y.z,a, h)=0 )
Differentiating partially w.r.t 2 and b we obtain

or oF

Y and P 0 ... (5)
Suppose it is possible to eliminate @ and b from (2), (5) then the relation so obtained is
called the singular solution of the PDE (1).
Referring to Problem - 1 again, the complete solution is z—(x+a ) ( y+b)y=20

Differentiating partially w.r.taandbweobtain y+b = 0; x+a = 0. Hence z = 0 is
the singular solution.

Geemetrical meaning of various types of solution
A complete solution represents a two parameter family of surfaces.

A particular solution represents a particular surface of the family of surfaces given by
the complete solution. A general solution represents the envelope of the one parameter
family of surfaces. The singular solution represents the envelope of the two parameter
family of surfaces.
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4.5| Solution of non-homogeneous PDE by direct inlegration

In this method we find the dependent variable which being the solution, by removing
the differential operators through the process of anti differentiation, that is
integration.

To illustrate the method, let us first consider an ordinary differential equation (ODE):

dy _

2
x
dx

Integrating, y = j X2 dx + k, where k is the constant of integration.

3

the solutionis y = % + k.

On the other hand, if we consider the PDE %E = x2,

where 1 is a function of x and y, thenu = I % dx + k, where k may be arbitrary function
of y, because y has been treated as constant.

Hence the solution is represented in the form,

3
u = % + f(y), where f(y) is an arbitrary function of y.

We observe that the constant of integration is now an arbitrary function f(y) -

Therefore it is important to note that in the case of a PDE, when we integrate w.r.t. x
we must add a function of y as arbitrary constant (ie., a function of the other
independent variable or variables as the case may be ). Similarly if we integrate w.r.t. y, we
must add a function of x as arbitrary constant.

Observe the following illustrative examples:

(1) If u is a function of x, y, z then the solution of—g—;i =XPis u = szdx+f(y,z)

3
which being u = % + f(y, z)

. : : du .
(2) Suppose u is a function of x and t. Then the solution of == = cosx cosf 1s

ox
u = cost Jcosxdxi—f(t)whichbeing u = costsinx+f(t).

9 _
ot
U = CosX Icostdt+f(x) whichbeing u = cosx sint+f(x).

Similarly the solution of cosx cost is given by
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WORKED PROBLEMS

X a*y
21, Sofve: ©F = xty
dv

>> Consider a—;—t =x+y
dx

ie —a~ Qg = x+
v ox | dx | Y

Integrating w.r.t x treating y as constant,

d
a_: = f(x+y) dx+f(y) = fx dx+y Il dx+f(y)

. u X
e, a=-§+xy+f(y)

Integrating w.r.t x again we have,

U = I[% + xy+f(y)JdX+g(y)

:% _[xzdx+y dex+f(y) jldxa-g(y)

Thus the solution is given by

3 2
¥ ox
w="c+ L b xf(y)+g(y)
____________________________________________ R
2
22. Solve : = . =" +a
o dxdy Y
>> The given PDE can be written asi L + 4.
dx | dy ¥

Integrating w.r.t x treating y as constant,

0z x 1

" I(§+a]dx+f(y) =y Jxdx+a [1dx+f(y)
_ z ¥
1., EE:EL_’ +ax+f(y)

Integrating now w.r.t y,
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2
. 1
z = 52— Iy dy+ax Ildy+j-f(y)dy+g(x)

Thus the solution is given by,

2 .
logy+axy+F(y)+g(x), where F(y} = If(y)dy

z=

23, Soloe: oy

= cos(2v+3y)
gy~ dy

>> The given PDE can be written as

0 (8 [9z)]_
ax(ax[ayn—cos(?.x+3y)

Integrating w.r.t x,

9 (QZ_J = Jcos(2x+3y)dx+f(}/)

dx | dy
. 9 [0z | sin(2x+3y)
ie., ™ [ay]_HZ + f(y)
Again integrating w.r.t x,
gi = % J‘Sin(2x+3y)dx+f(y) Jldx+g(y)
ie, g; - mcos(i“?'y) +xf()+g (V)

Finally integrating w.r.ty,

z=-

i [cos(2c+3yydy+x [Feyydy+ [ g(yydy+n(x)

| —

ﬂ%ﬂﬂ_mﬂy)mcy)mu),

., zZ = -

.

where F(y) = | f(y)dy, G(y) = |g(y)dy

Thus the solution is given by

z = - —11—2 sin(2x+3y)+xF(y)+G(y)+h(x)
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2 :
. : : .0 .
24. Solve axéi = sinx sin y for which 5; =-~2sinywhenxy = 0, andz = 0ifyis
an odd multiple of 1/2. [orz = 0 if y = (2u+1 )121: ]

>> Here we first find z by integration and apply the given conditions to determine
the arbitrary functions occuring as constants of integration.

The given PDE can be written as 9 {E}E] = sin x siny
dx | dy

Integrating w.r.t x treating y as constant,

dz : .
oy " siny Ismxdx+f(y)
. 0z .
ie., 3y = —siny cosx+f(y) (1)

Integrating w.r.t y treating x as constant,
zZ=-cosx Ismydy+jf(y)dy+g(x)
ie., z=(-cosx)(—-cosy)+F(y)+g(x),
where F(y) = [f(y)dy.
Thus z =cosx cosy+F(y)+g(x) “ o (2)

2z

dy
—2siny = (—siny) - 1+f(y) (. cos0 = 1)

or f(y) = —siny.

Hence F(y) = Jf(y)dy = J.qsinydy = co$ Y.

Alsoby data, == = —2siny when x = 0. Using this in (1),

With this, (2) becomes z = cos x cos y + cos y + g(x) .. (3)

Using the condition thatz = 0 if y = (2n+1)§ in (3) we have
n T
0 =cosx cos(2n+1)§ + cos(2n+1)5 + g(x).

But cos(2n+1)§=0. and hence 0 = 0+0+g(x) or g(x) = 0.

Thus the solution of the PDE is given by

Z=cosx cosy+cosy or z = cosy{cosx+1)
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% u

- d
25. Solve —= = ¢ ' cos x given that u = 0 when t = Oand o> = Oatx = 0. Also

oxot dt
show thatu — sinxast —» oo,

dx | ot

Integrating w.r.t x treating { as constant,
@Ei
ot

du
ot

Integrating w.r.t ¢ treating x as constant,

ot -
>> The given PDE can be written as 9 [-—-] = ¢ 'cosx.

=¢! Icosxdx+f(t)

ie., e_tsinx+f(t) ... (D

w=sinx [ T+ [ft)derg(x)
ie, u=-sinxe +F(t)+g(x) . (2)
where F(t) = _[f(t)dt
Also by data, il = whenx = Q.

ot
Using this in (1),0 = ¢~ 'sin0+f(t) and hence f(t) = 0

Now F(t) = |f(t)dt = [0dt=0

Substituting F(t} = 0 in (2), we get
u:—e_tsinx+g(x) . (3)

Alsoby data,u = Owhent = 0

Using this in (3),0 = —¢"sinx+g(x) or g(x) = sinx
Thus the solution is given by

u=—-¢"'sinx+siny or u = sinx(l—e"t)

Alsoast — oo,weknowthate_t — (. Hence # — sinx as f 5 oo

2

d
26. Solve b_zz = xy subject to the conditions that % = log(1+y) when x =1,
e X

and z = 0 when x = 0.

>> The given PDE can be written as % [_z] = xy
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Integrating w.r.t x, treating y as constant,

Loy [xdr+f(y)

ie. *=§-y+f(y) ()

Again integrating w.r.t x, treating y as constant,

z =% szdx+f(y) Ildx+g(y)

3
Thus z=x—6£+xf(y)+g(y) ... (2)
Also by data, g}z}’ = log(1l+y)whenx = 1 Using this in (1),

1 1
log (1+y) =75 y+f(y) or f(y)=log(l+y) -3y

With this value for f ( i), (2) becomes

3
X 1
z=?z+x{log(1+y)—§y}+g(y) ... {3)
Alsoby data, z = Owhen x = 0. Using this in (3}
0=04+0+g(y) or g(y) =20
Thus the solution is given by

3
z=x—62+x{log(l+y)—%y]

X .0
27. Solve —- = > subject to the conditions =2 log x wheny = 1and z = 0
dxdy Y dx ¢

whenxy = 1.

2 2
>> Since the condition is in terms of % , we shall use the fact that ii = Q-i and
ox dxdy  dydx
write the given PDE as 9. ( éLzJ =2
dy | dx y

Integrating w.r.t y, treating x as constant,

dz 1
P Iy dy +f(x)
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, 0z |
ie., ax—xlogy+f(x) oD

Integrating w.r.t x, treating y as constant,

z = logy J.xdx+jf(x)dx+g(y)
Thus z=“~x;10gy+F(x)+g(y) @)

where F(x) = [ f(x)dx

Also by data, g—i = logx when y = 1. Using thisin (1),

logx = xlogl+f(x)or f(x)=logx, since logl =0
Now F(x) = Jf(x)dx = Ilogx - 1dx = xlog x — x, by parts.

Hence F{x) = xlogx—x and we substitute this in (2).
2
Thus z=52—logy+xlogx—x+g(y) : . (3)

Alsoby data, z = 0 when x = 1. Using this in (3),

0=%10gy+0—1+g(y) or g(y):l—%logy=1—log\f}7
Thus the solution is given by
2
z=%logy+xlogx—x+l—log\g

2 dz
28. Solve : —— = 2x+1y, - = x—21.
( dx Y dy Y

>> We are given a system of equations. (simultaneous equations)

0z dz
3 2x+y and oy x-2y

Integrating w.r.t x and w.r.t y respectively,
z =2 jxdxﬁly J ldx+f(y) and z = x Ildy——z Jydy+g(x)
ie., z=x2+xy+f(‘|/) and z:xy—y2+g(x)

We have to apprepriately choose f(y ) and g (x)to get a common expression for z.
Stmple comparison shows that f(y) = - _1/2 and g(x) = .

Thus the solution is giver by z = a4 xy — y2
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29. Solve the system of equations,

u ou
T = 6xy+23, T = 31’2—7.,

dx dy = 37 - y

ou
gz
>> It is evident that u is a function of x, y, z. Integrating the given equations w.r.t
X, ¥, z respectively, we get

u=6yJ.xdx+z3 Ildx+f(y,z) or u:3x2y+xz3+f(y,z)

U

32 _‘-Idy—zjldyﬁ-g(x,z) or u=3x2y—yz+g(x,z)

u = 3x Izzdz—yfldz+h(x,y) or u x23—y2+h(x,y)‘

We have to properly choose f{y,z), g(x,z), h(x, ) to get a common expression
for u. Simple comparison indicates that we must choose fly.z) = -yz,

gi{x,z) = x2> and hix,y) = 3x2y.

Thus the required solution is givenby u = 3x? y+xz°— yz

9% z » 0z 9z ,
30. Show that the PDE o = a 5 canbereduced to the form = 0 using
at ox du do
the substitutionu = x+at, v = x~at. Hence solve the equation.
>> Weregard z as a function of u, v where 1, v are functions of x and ¢.
dz dz du oz ov dz  dz du dz dv
2 chainrule, — = — — + — — N, T o T (1
by chain rule, dx  du ox  dv ox gt du 9t  dv ot @

But U =x+at, and v = x—at

out dv du dv
— =1 —=1, =4, — = —a

dx dx at dt
Substituting these in (1) we have,

ax  du  av o du ov

Applying the chain rule again,

Pz _ 9 () ., 2 ()
Py T oy | ox dx  dv | dx ox
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Pz_ 3 (02, 02| 9 (3 dz)
a2 oduldu dv) dx Ov u v ox
2 2 2
:8__; oz (1) + a°z +822_(1)
du du do dv ou o
o 822_822+ #*z Pz since &z B Pz
" e ol dudv  Jp dvou  Oudv
Pz 9 [0z Ju J [0z dv
Also ofr  du {at]' o Taolat)
9 9% 9z du 9 9 gz}
T T " at w ! " ot
9z Pz
_(a auZ—aauavJ (a)+( avau “ vz]-(—a)
ie gf_z_azgz_z_ Z_Q__Z_ Y% since ’z o7z
’ o it dv 2 s av du o dv
2 ~2
The given PDE @,25 = _d__: now becomes,
dt dx
2 &z 9’z &z 2 9z &z 9’z
a + =a 2 +
du? oudv gt a? dudv 3
: 9%z Pz 9z
o 2 maw  amaw O 4 du v
. & 2 ’
ie., P 0
2 &z ¥z
Thus the equation —5- = @> == hasbecome -~ = 0 and we shall solve this by
ot 2 du dv
directintegration.
We have i [az] =0
v
Integrating w.r.t u we have,
g% = const. = F(v) (say)

Integratingnow w.r.iv,
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z = jF(v)dv+g(u) or z = f{(v)+g(u)
where f(v) = IF(v)dv and u = x+at, v = x—at by data.

Thus the solution of the given PDE is represented by
z=f(x-at)+g(x+at)

4.6| Solution of homogeneous PDE involving derivatives
with respect to one independent variable only

Suppose that the dependent variable has been differentiated partially w.r.t. one
independent variable say x only. Then the PDE can be treated as an ordinary differential
equation (ODE) and we are already familiar in solving ODE.

The arbitary constants in the solution are then replaced by arbitrary function of the
other variable ( y } giving a solution of the PDE.

WORKED PROBLEMS

9z , d
31. Solve——+z = 0 given that when x =0, z = &Y and &= = 1.
a2 dx

>> Let us suppose that z is a function of x only. The given PDE assumes the form of
ODE,

4z

——+z=0 or (D2+1)z=0 where D:“EIL
dx dx

AEis nP+1=0 or m*=~1 o m=14 Vo1 = i {complex roots )
The solution of the ODE is given by
Z =€) cosx+c, sinx.

Solution of the PDE is got by replacing ¢, and ¢, by functions of y.
Hence, solution of the PDE is given by

z=f(y)cosx+g(y) sinx ()
Now we shall apply the given conditions to find f (/) and g{y).

By data, when x = 0,z = ¢Y. Hence (1) becomes
¢ = f(y) cos0+g(y) sin0
e, Y =fy)14g(y) 0 o f(y) = e

Also by data, when x = 0, % = 1.
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Differentiating (1) w.r.t. x partially we get,

0z

o = —f(y)sinx+g(y) cosx

Applying the condition we get,
1=~f(y)sin0+g(y)cos0 . gly)=1

We substitute f(y) = & and g(y) =1 in (1).

Thus z = &/ cos x +sinx is the required solution.

: d
32. Solve - = z given that when y = 0, z = & and = = €

>> Let us suppose that z is a function of y only.
The given PDE assumes the form of ODE,

d2 2

—E=zorﬂ—zzo or(D2—1)2=O,whereD=‘d“
dy e dy

AEis m*-1=0 - m=2x1 (realand distinct roots )

The solution of the ODE is given by
z=cd+e,ey
Solution of the PDE is got by replacing ¢, and ¢, by functions of x.
Hence, solution of the PDE is given by
z=f(x)&+g(x)e? D
Now we shall apply the given conditions to find f(x)and g(x).
By data, when y = 0, z = ¢*. Hence (1) becomes
¢ = f(x)+g(x)
dz —x

—_ =P
4 ay
Differentiating (1) w.r.t. y partially we get,

0z _
uta _ Y
% f(xye—g(x)e

Also by data, whén y =20

Applying the condition we get,
et = f(x)-g(x)

Now we shall solve,
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flx)y+g(x) =¢" and f(x)-g(x)=¢*
Adding and subtracting these equations we get,

x - X
2f(x)=¢+e " or f(x):-e--+2€ = cosh x
] ) RN
2g(x)=¢"~¢* or g(x) = 5 =sinx

We shall substitute these in (1).

Thus z = coshx &/ +sinkx ¢ ¥ is the required solution.

. z 2. z
33. Seolve - = a” z given thatwhen x =0, z = 0 and -

oy’ ox

= a siny

>> Let us suppose that z is a function of x only.
The given PDE assumes the form of ODE,

d2Z 2

;,""52“ z or (D*-a%)z =0 where D - q
x

dx
AEism?-a>=0 . m=+a ( real and distinct roots )
The solution of the ODE is given by

_ x —ax
z = C}"ﬂ +e, e

Solution of the PDE is got by replacing ¢, , ¢, with functions of y.

Solution of the PDE is given by

ax

2= fly) P Hg(y) e
Now we shall apply the given conditions to find f(y)and g (y).

By data, when x = 0, z = 0. Hence (1) becomes
0=f(y)+g(y)

Also,when x = 0, g—i = 4 siny.

Differentiating (1) partially w.r.t. x,

3 . }
S=af(y) T magly) e

fax

Applying the condition to this equation we get,

)
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asiny = af(y)-ag(y) orsiny = f(y)-g(y)
Bysolving f(y)+g(y) = 0Oandf(y)—-g(y) = siny we get,

f(y) = %Z and g(y) - Sl;
We shall substitute these in (1).
. P ax - X
Now, z = %‘_E ¢ - su;y ¢ ™ =siny - E——Tew = siny sinht ax

Thus =z = siny sink ax is the required solution.

. dz ) d= ) e
34, Sofve = .'12 zgiven thatawlen x = 0, o = siny and - =)
N dy - dy

>> This problem is same as the previous one but for a different set of conditions.
Solution of the PIDE is given by

= f(y) e+ glyye™ )

For the purposc of applying the given conditions we shall differentiate this w.r.t. x and
y partially.

=af(y) P -agy)e ™ . A{2)

=y g () e .- (3)
9z )

By data, P a siny when x = 0. Hence (2) becomes

asiny =af{y)—a g(y)

or f(y)-g(y) = siny NG
Also by data, gi = 0 when x = 0. Hence (3) becomes

0=f"(y)+g (y)
Integrating w.r.t. y we get,
flyy+gly) =k -+ (5)
where k is the constant of integration. By solving {4) and (5) simultaneously we get,
1 . 1 :
fy) =5 (k+siny) and g(y) = 5 (k-siny)
We shall substitute these in (1).

ax

Now, z = -;— (k+siny) e""#% (k—siny) ¢
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or z:k-;(e“x+e”“)+siny-%(e”—e”)

Thus z = k cosh ax+siny sink ax is the required solution.

N . ot . L. ..
35, Solee , tuo= 0" where v satisfres the conditions
N2
dy

. ; Ld
W w(d, yy - ol ? (i) ()” (0, y)=1
v ‘

LS

>> Let us suppose that u is a function of x only. The given PDE assumes the form of
ODE,

£
—u+u =0 or (D2+1) #t = (0 where D =i

dx? dx

AEis m*+1 = 0 or m? = -1, ~ m=x~N-1=+;
The solution of the ODE is given by
It = ¢ COSX+C,sInx
Solution of the PDE is got by replacing ¢, and ¢, by functions of y.
Solution of the PDE is given by
u(x,y)y=u=f(y)cosx+g(y) sinx (D
By data, u (0, y) = e’? = \e.
Putting x = 0in (1) we have,

Ve = f(y) cosO+g(y) sin0 =~ f(y)= e
o
Also by data, ™ (0, y)=1

Differentiating (1) w.r.t. x partially we have

% = ~f(y)sinx+g(y) cosx

d
Putting x = 0 and é—% = 1 we have,

I=-f(y)sin0+g(y)cosO .. g(y)=1
We substitute the values of f (i ) and g (y ) in (2).

Thus u = Ve cosx+sinx is the required solution.
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2

=

z . ‘ d .
36. Selve —— = z given Hhat = = 0 and °° = sinx when y = 0.
Ay dy

>> This problem is same as Problem-32 but for different conditions.

As in Problem-32 we have,

z=f(x)&+g(x)ye’? ()
Differentiating w.r.t. y partially we have,

9z _ ~y

ay—f(x)ey g(x)e o 2)

o _

dy
Hence (1) & (2) becomes
0=f(x)+g(x) and sinx = f(x)-g(x)

By solving these simultaneously we get,

By data, z = 0 and sinx when y = 0.

sinx sinx
f(x) = and ¢(x)=-——
2 2
We substitute these in (1).

sinx sin x
&=
2 2

_ . 1 _ ) )
Now, z = eyzsmx-i(ey—e ¥y = sinx sinhy

Thus z = sinx sinf1y is the required solution.

. a:
37. Solve ~Z+3 -3 =0 subject to the conditions that z = 1 and =y
dx dy ax

when x = 0.

>> Let us suppose that z is a function of x only. The given PDE assumes the form of
an ODE

(D*+3D-4)z =0 where D = ;%

AEism*+3m-4 =0or (m=1) (m+4) =0
m=1, m=-4.
The solution of the ODE is given by

_ by —4x
zZ = C]L’ +(‘2€

Solution of the PDE is given by
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z=f(y) e +g(y) e ® )
Differentiating partially w.r.t. x we get,

oz x -4

o Sy e rgy) e (-4 ()

By data, z = Iandgf—( = ywhen x = 0
Hence (1} and (2) becomes

L=f(y)+g(y) and y = f(y)-4g(y)
By solving these simultaneously we get,
1 1
fly) =7 (4+y)andg(y) = ¢ (1-y)
We substitute these in (1).

Thus =z =

. T 0l , J d° =
Weoselee  wd DT =0, given thalz =0, T = 0, -—= =4 when x = 0.
v’ g ' dx e’

>> Let us suppose that z is a function of x only.

The given PDE assumes the form of an ODE,

(D’+4D) z = 0 where D = L]

dx
AE is m>+4m = 0 or m(m2+4) =0 -~ m=0m=zx2
The solution of the ODE is given by
Z =€ tc, cos2x+c, sin2x
Solution of the PDE is given by
z=f(y)+g(y) cos2x+h(y) sin2x .1
Differentiating partially w.r.t. x twice, we have,
0z .
az—g(y)-2sm2x+h(y)-2c052x e {2)
22~E=—g(y)-4c¢:)52x—h(y)-45inlx 3
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dz 3z
z= d —
™ 0 an o 3

Hence (1), (2) and (3) becomes,

0=f(y)+g(y), 0=2h(y)and 4 = ~4g(y)
From these, weget 1(y) =0, g(y)=-landf(y) =1

By data,z = 0, =4, when x =0

We substitute these in (1).

Thus z = 1-cos2x = 2sin® x is the required solution.

’ .. du
, tising the substifubion - = v,

2% 1 dit
39. Solve -~ =
dvdy A dv
>> The given PDE can be written as

t

Fu _du o u P u
dydx  ox

dxdy Oy ox
It can be further written as 9 a_u = %
dy | dx dx

Usingg—z = 7, we have, gay—( (v)=7v or a_;:_v =0

Let us suppose that v is a function of y only. Then we have
dv d

dy_v =0or (D-1)v =0, where D = Eﬁ

AEism-1=0o0rm=1

The solution of the ODE is given by v = c¢é¥

Solution of the PDE is given by

v =f(x)ey where v = %

[ We can also obtain v by separation of variables ]

Now we have % = f(x)e

Integrating w.r.t. x treating y as constant we have,
u = e If(x) dx+g(y)andlet .[f(x) dx = F(x).

Thus u = F(x) ¢/ +g(y) is the required solution.
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3
J" i du , .. du
: o o= 0 using the substiiution - = p

40. Soloe =
Ny Oy diy
2 .
>> The given equation can be written as % gu) _du =0
ax” | dy dy
d &
Using L. v, the equation becomes —;—v =0
dy dx

Let us suppose that v is a function of x only. Then we have,

dZZ’ il d

-0 =0 or (DX-1)v =0, where D = —

dx? dx
AEism?®-1=0 . m=+=1

The solution of the ODE is given by
v=c e, et
Solution of the PDE is given by,

v=f(y) e +g(y) ¢ where v :g}j

X

Now we have, g—: =f(y)e+g(y) e

Integrating w.r.t. y treating x as constant,
= ¢* Jf(y) dy+e > Jg(y) dy+H(x)

Let  [f(y)dy=F(y)and fg(y) ay = G(y)

EXERCISES
3z .
L Solve:——5—+18x)’ +sin(2x—-y) = 0
dx“ 9y
2. Solve : i = sin x Cos iventhatiz———Zcos when x =0 andz = 0
’ Toxdy Y & dy Y

when y = nn
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z _ . .
= ¢ 2 cos3x subject to the conditions,
dx ot

Q) z(x, 0)=0 (2 %?(0, £y = 0

3. Solve

4. Solve the system of equations, % = siny+z, %;: = Xxcosy-z, % =X~y
2 2 2
5. Obtain the solution of 28—E -5 Iz 6i*‘ = 0 by using the
e Camdy o
transformation, v = 2x+y and w = 3x+y
Pz , dz .
6. Solve ——+z = 0 giventhatz = cosx and - = sinx when y = 0.
a7’ dy
2
7. Solve Qj+4z = (0 giventhatwhen x =0, z = Y and %z _ 2.
A ox
2z
8. Solve 5(2“-162 = 0 giventhat z =10, P 4siny when x = 0.
2
9. Solve %2——2 §E+2 ~ 0 giventhat z = ¢ and —gi =1 when x = @
2
10. Solve I u +4% = 0 using the substitution % = 0.
axdy  dy dy
ANSWE Iis

1 z= -x3y3+% cos (2x—y)+x F(y)+G(y)+H(x)

2. z=—siny (cosx+1) 3. z=ésm3x(1—e'2*)

4. 1 = xsiny+xz-yz 5. z = f(2x+y)+g(3x+y)

6. z=cos(x—y) 7. z = ¢ cos 2x +sin 2x

8. z = sinf 4xsiny 9, Z:ex[eycosx+(l—ey) sinx}

10. z = F(y) ¢ ¥ +G(x)
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4.7] Solution of the Lagrange’s linear PDE

Given a relation of the form ¢ (u, ) =0 where 1 and v are functions of X,y z
where z = z(x, v), we have already discussed the method of forming a PDE by
eliminating the arbitrary function & (article 4.3. Problems 13 to 16). Now let us see the
process involved in the formation of PDE from the relation O (u, v)=10

Differentiating partially w.r.t x and y by applying chain rule we have,
dp[au  audz] 2elo0 avor]
ou {ax t axJ TR

99 du  oudz| 99w dvadz)

ou | dy 9z dy o Lay 0z ByJ -

Transposing the second term in these equations onto the R.H.S and dividing one by
the other we have,

ou  Ou - du dv
dx az"_ax azp
o, o w9

- - + ;
dy PP dy oz 9
pe, |2t Mov o 1 T v Mo ow ]
dx 9z PJ dv oz v dr  dz P [ dy Iz !

) ’:au dv Iy au:' [au dv v au} di v v Ou l
e, o + ¢ —_— e = = | == 2L =

dz dy  dz dy dr 9z o dz | - dy dx - dy E
This is of the form Pp+Qg =R, (1)
here, p = 4 90 _0v du . dudv  dv du _dudo dv du
T Ty Ty ST 2z ax o T 0y ox | dy ox

Equatien (1) is a PDE of first order and first degree known as Lagrange’s linear
equation which has a solution of the form ¢ (u,v) = 0

We now proceed to discuss the method of solving Lagrange’s linear PDE of the form
Pp+Qq=R
Let us consider two equations

u(x, y, z)= €y, v{x,y,z)= €y
where ¢; and ¢, are constants. Taking differentials (total derivative) we have

ot ou du
— gy 4 S =z =
Bxd +ayd}/+az z=10

dv do ov
axdx+aydy+az dz =0
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By the rule of cross multiplication we have,

dx 3 dy 3 dz
u v _dvou dudv S0 du | dudv _dv o
dy dz dy dz 9oz dx Oz Ox dx dy  dx dy

o dx_dy 4z odx _dy_dz

-P -Q -R P00 @

Equation (2} can be regarded as a system of equations (simultaneous equations) in three
variables and relations u (x,y,2) = ¢ andv(x,y,2) = ¢, satisfy these equations.

Thus ¢(u,v) = 0 is a general solution of Lagrange’s linear PDE.

Working procedure for problems

® Given the PDE in the form Pp+Qg = R we form equation of the form

d
ip’f = % = iz known as the Auxilary Equation. This system of equations can be

solved as follows.

e We can consider suitable pairs which can be put in forms like
f(x)de=g(y)dy , g(yYdy=nh(z)dz , f(x)dx=h(z)dz
(Separation of variables) so that by integration we can get the relations in
{(x,¥); (y,2); {z,x) asthe case may be.

or

e We have a property in ratio and proportion that a ratio

a, Ay kia, +kya,+kya,
= = = 7~ isalsoequalto

a
1
by b, by ki, by +k,by+kyby

With reference to the Auxilary Equation we try to find multipliers
k

, kzr k3; kl’, kz’, k3’ such that

kdevkydy+kydz  kdevk)dy+ky dz
P Q R k) P+k,Q+k, R k P+kyQ+kyR

2 Integrating the two new expressions we obtain two relations connecting
X, ¥, z.

S, Suppose u(x,y,z) =c andv(x,yz) = c, are the two relations so obtained,
then ¢ (u,v) = 0 constitutes a general solution of the PDE Pp+ Qg = R
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WORKED PROBLEMS

il Solve: yp+yy =
>> The given equation is of the form Pp+ Qg = R.

The auxilary equations are

dx _dy _dz
x oy oz

Consider %:C = E;l which on integration will give

log x = log y+loge, (constant of integration is taken as log ¢, only for convenience )

ie., log (x/y) = log cll or x/y =g

Also consider %E = %Z- and we can similarly get y/z = C,-
Thus a general solution of the PDE is given by

o (x/y, yz)=0
Note : Solutioncanalsobe O (y/z, z/x)=0; 0 (z/x, x/y) -+ 0 etc.

120 Solve @ peoty+ygcoty = cotz
>> The given equation is of the form Pp+ Qg = R.

The auxilary equations are

dx dy  dz G

cotx coty cotz

Taking the first and second terms we have tanxdx = tan ydy which on integration
will give

log (secx) = log (secy)+logc,

secx secx
or log = logc, or =
secy 1 secy 1

) c
Similarly taking the second and third terms in (1) we obtain %z =

Thus a general solution of the PDE is given by

¢ (secx/secy, secy/secz) =0
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43. Solve: y2 zp =3 (zq-y)

>> The given equation yzzp—xzzq = xzy is of the form Pp+Qq = R.
The auxilary equations are
dx dt dz
Y Y

y2 2 -Xz 2 y
Taking the first and second terms we have
& dx + yz dy = 0.
Integrating we get /3 + yg/ 3=1¢ or 2+ y3 = 3¢,
Also taking the last two terms in (1) we have ydy+zdz = 0. Integrating we get

2
y;-+%=cz or y2+zz=2|:2

Thus a general solution of the PDE is given by

O(C+y, P+2)=0

4. Solve: (y-z)p+(z—-3)g=(v-y)

>> The given equation is of the form Pp+ Qg = R.
The auxilary equations are
dx dy dz )

y—-z z2-X X-y
Using multipliers 1, 1, 1 each ratio is equal to

dx+dy+dz _dx+dy+dz
y—z+z—x+x—y 0

dx+dy+dz = 0 which on integration gives x+y+z = ¢

Again by using multipliers x, v, z each ratioin (1) is equal to
xdx+ydy+zdz _xdx+ydytzdz

XY=XZ+Yz—XYy+xz—yz 0
xdx+ydy+zdz = 0 which onintegration gives

ﬁ+f—+£2—:c or x2+y2+z2=2c2

22 2 2
Thus a general solution of the PDE is given by

d(x+y+z, xz+3f+zz) =0

45. Solve : (y2+ Pyprriyg-z) =10
>> Thegivenequation(yz+zz)p+xyq=xz is of the form Pp+ Qg = R.

The auxilary equations are
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dx _dy _ iz

Pe vy Tz
Taking the second and third terms we have,
dy _ dz
y oz
Integrating we get logy = logz+ loge,

Le, log (y/z) =loge, or yz= o
Using the multipliers x, —y, —z each ratio in (1) is equal to

xdx—ydy-zdz = xdx—ydy-zdz

xy2+x22—xy2—x22 0

xdx-ydy—-zdz = 0.

2
Integrating we get i - ﬁ - s €, or xz—yz-—z2 = 2¢,

Thus a general solution of the PDE is given by

0 (wz, ¥-y-2F)=0

6. Sofve v | _1;3 -z yp+yo et 1y o=z - w_l/g )
>> The given equation is of the form Pp + Qg = R. The auxilary equations are
dx 3 dy B dz
x(P=2)  y(2-2) 2P

Using the multipliers 1/x, 1/y, 1/z eachratio is equal to

- (1)

1a'x+1dy+ldz 1alx+ldy+ldz
x y z _x y z
PP i 0
1dxa‘—ldy+ldz=0

x Y z

Integrating we get
log x +logy +logz = log €

ie., Iog(xyz)=log(c1) ofr Xyz=g

Again using the multipliers x, y, z each ratio in (1) is equal to

xdx+ydy+zdz _xdx+ydy+zdz

PR I B B
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xdx+ydy+zdz =0
Integrating we get 12/2+]/2/2+22/2 =, Or x2+y2+zZ =2¢c,

Thus a general solution of the PDE is given by

47. solve : x( y?‘ +xyp -l Vs Y o= oo 3 j,fz j
>> The given equation is of the form Pp + Q4 = R. The auxilary equations are
dx : dy 3 dz
x(y2+z) - —y(x2+z) - z(xz—yz)

Taking the multipliers 1/x, 1/y, 1/z each ratio is equal to
1
- ¥
y2+z—x2—z+x2—y2_ 0

xyz = ¢, (Refer to the previous problem)

l.dx+ldy+ldz la’x+ a‘y+ldz
x y z X z

Again taking multipliers x, y, —1 eachratio in (1) is equal to
xdx +ydy—dz _xdx+ydy—dz
x2y2+xzz—x2y2 —yzz—xzz+y2z 0

xdx+ydy—dz =20

Integrating we get 2+ _1/2/2 -—z=¢, oOr x2+y2—2z = 2c,

Thus a general solution of the PDE is given by
dp(xyz, x2+y2—2z) =0

. 2 a4z
8. Find the general soliiion of x = -+ yz o =1y
" : A ; t‘)}[ :

<4z

>> The equation is of the form Pp+ Qg = R where P = xz, Q=yz, R=uxy
The auxilary equations are

dx _dy _ dz (D)

Xz  yz Xy
. . dx dy_ . : Lo
Taking the first and second terms we have, 3 y which on integration gives

logx = logy+logc, or log(x/y) =loge, or x/y=¢
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Next, by using the multipliers v, x, -2z each ratio in (1) is equal to

Ydxtxdy-2zdz  ydx+xdy-2zdz d(xy)-2zdz

xyz+xyz-2xyz 0 0
g d(xy)ud(zz) = 0, which on integration gives xy-z2 =,

Thus a general solution of the PDE is given by

49, Solve : xz( -z )p~{ry2 (z-viyg = e Syl

>> The given equation is of the form Pp+Q g = R. The auxilary equations are
dx dy B dz

xz(y—z) ) yz(z—x) B zz(x—y)

(D)

Using the multipliers /5%, 1/ y2 , 1/2° each ratio is equal to

"l—dx+—1~dy+izdz %dx+idy+l2dz

A R T A

(y=z)+(z-x)+(x-y) 0

L ax+ 5 ay+ L gz = 0, which on integration g

2 X + yz i+ 7 z=0U, w onintegration gives
1 1 1 1 1 1

—';—g"'*——Cl or ;+§+z—“‘cl—k1

Again using the multipliers 1/x, 1/y, 1/z each ratio in (1} is equal to

1
X

dx+ldy+ldz 1a’Jr+l dy+ldz
v z _X y z
x(y=-z)+y(z-x)+z{x~y) 0

% dx + ; dy+ % dz = 0, whichon integration gives

logx+logy+logz= ¢, or log(xyz) =logk, or xyz-= k,

Thus a general solutions of the PDE is given by
O(V/x+Vy+1/z, xyz) = 0
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50. Solve: (y+z)p+(z4iv)g =1ty
>> The given equation is of the form Pp + Q g = R. The auxilary equations are
dx d dz

A (D

y+z z+x x+Yy
Each ratio is equal to
dx+dy+dz _ dx—dy _ dx—dz
2(x+y+z) y—x Z—X
Taking the first two terms on integration we have,

%log(x+y+z) = —log (y-x)+logcy

Le.,

10g[\1x+y+z : (y—x)] =loge¢, or Vx+y+z (y-x) =g
Again taking the last two terms in (2) we have after integration
~log(y—x) = ~log(z-x)-logc,

y——x}:logcz or = 0y

Z—-X Z—X

ie. log {
Thus a general solution of the PDE is given by

O {\}x+y+z(y—~x), g] =0

) z

- 2 oz
51 Selve (A" - - y" o = {xy~p)z
‘ dx J Jy ( '

>> 'Ihegivenequationx2p—y2q =(x—-y)zis oftheformPp+(Qg = K.
The auxilary equations are
dx dy dz

2o (x-y)z

From the first two relations we have on integration

-1 1 11
— ==+4¢ Oor —+—-=-c¢
x 1 y o x 1
We also have from (1)
dx +dy dz dx+dy dz
z

x2_y2 C(x-y)z o X+

Integrating we get log (x+y) = logz+logc,

(1)
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ie., log[{;ﬂJ = logc, or x_}g = C,

Thus a general solution of the PDE is given by

vy oox z

52. Selve : _1/2 pP=—yyqg =x(z-2y)
>> The given equation is of the formPp+Qq = R. The auxilary equations are
dx dy dz

VT xy x(z-2y)
Consider ax = Ay

vy

Le., %:% or xdx+ydy

| Integrating we get, X272 + y2/2

I
<

2 —
¢, or x +y2—2c1

Now consider 4y = dz
—xy x(z-2)
i, ay _ dz
—y  z-2y

(z-2y)dy+ydz =0
Le., (zdy+ydz)-2ydy =0
ie., d{yz)-2ydy = 0.
Integrating we get yz— yz = ¢
Thus a general solution of the PDE is given by

é Solve : (xz—yz)p+(_l/2-—zx)q = (zz*xy)

>> The given equation is of the form Pp+ Qg = R.

The auxilary equations are
dx dy

X2 - Yz - y2 ~-2zX

Equivalently we can write in the form,

dz
P xy
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dx —dy _ dy - dz _ dz —dx
(xz—y2)+z(x—-vy) (y?—zz)+x(y—z) (zzmx2)+y(z—x)
io dx —dy _ dy —dz _ dz—dx
Y (x-y) (x+y+z) (y=z){(x+y+z) (z—x) (x+y+z)
or dx—ggzdy—dzzdz—dx L

x—y Y-z Z-X
From the first and second terms of (1) we have,
d{x-y) _d(y-z)
x-y Y-z
= log (x-y) = log(y-z)+logc , onintegration.

X2V o X~V _
or log(y_z]—logcl = y—z_cl

Similarly from the second and third terms of (1) we obtain }zt-_z =c
—x

2

Thus a general solution of the given equation is
R [x_“z z—_ZJ 0
y—-z' z—X
\ 2_2_ 2
54, Solve: (A" —y" -z )p+2vyg = 2z
>> The given equation is of the form Pp+ Qg = R.
The auxilary equations are
dx _dy  dz i
2op2
Taking the second and third terms we have,
dy _ dz dy _ dz

2xy  2xz Ty Tz

Integrating we get, logy = logz +log ¢,
ie., log(y/z) = loge, or yz=g¢g
Using multipliers x, y, z each ratio in (1) is equal to

xdx+ydy+zdz _ xdx+ydy+zdz _ xdx+ydy+zdz
x3—xy2—-x22+2xy2+2xzz x3+xy2+xz2 x(x2+y2+zz)
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Let us consider

dy _ xdx+ydy+zdz or dy _ 2xdx+2ydy+2zdz
2 xy x(x2+y2+22) Y x2+y2+z2

Integrating we get, logy = log (2% + y2 +2°)+ log c,

It
e}
[

or lo —y—A=loc S —
g(ﬁ+ﬁ+£} 5% -

Thus a general solution of the PDE is given by
¢ (y'z, y/x2+y2+zz) = (

. z Jz
5y Solve: (mz - ny) ( F{ox=Iz) O+ (umv=1ly) =0
da dy

>> The given equationis (mz—ny)p+ (nx—Iz)g = (ly—mx)
Thisis of the form Pp+ Qg = R .
The auxilary equations are

dx dy dz

mz-ny nx-lz - ly —mx

Using the multiplies !, m, n each ratio is (1) is equal to

ldx+mady+ndx _ ldx+ mdy + ndz

Imz — nly + mnx — Imz + nly— mnx 0

ldx+mdy+ndz =0

Integrating we get Ix+my+nz = ¢,

Again using the multipliers x, y, z each ratio in (1) is equal to

xdx+ydy+zdz xdx+ydy + zdz

mxz —nxy + nxy — lyz + lyz— mxz 0

xdx+ydy+zdz =0

. vz 2 _
Integrating we get, Tttty = or x +y2+22—2¢:2

Thus a general solution of the PDE is given by
¢ (Ix+my+nz, x2+y2+::2) =0
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EXERCISES

Solve :

L

1. ptanx+gtany = tanz yzpt+tzxg =xy

3. x(y—z)p+y(z—x)q =z{x-Yy) 4, (mz—ny)p+(nx-lz)q = ly—mx

Vz

5. —x—-p+xzq=y2

&

(y+z)p—(z+x)g=(x—y)

7. x(y2+z)p—y(x2+z)q=z(x2—~y2) 8. (y+zx)p——(x+yz)q x2—y2

9. (y—zx)p+(yz+x)a;]=x2+}/2 10. (y2+22)p—xyq+zx=0
ANSWERS

1 ¢ (siny/sinx, sinz/sinx) = 0 2. (-, ¥ -22)=0

3 ¢(x+y+z, xyz) =0 4. ¢ (x2+y2+22, Ix+my+nz) =10

5. ¢ (x3—y3, 1”2_22) =0 6. 0 (x+y+z, x2+y2—zz):0

7. ¢(x2+y2—2z, xyz) =0 8. ¢(x2+y2+22, xy+.z) =0

9. ¢(xX°—1P+2, xy-2)=0 10. ¢ (y/z, ¥+ +22) =0

4.8| Solution of PDE by the method of separation of variables
(Product method)
This method is applicable for solving a linear homogeneous PDE involving derivatives

with respect to two independent variables. Solution of the PDE is determined through
the solution of two ODEs.

The method is illustrated stepwise in respect of a PDE involving two indepedent
variablesx, y andu = u (x, y) ’

Working procedure for problems
' Weassume the solution of the PDE in the form of a product.
Thatis u = XY where X = X(x)andY = Y (y)

S u = XY is substituted into thagiven PDE wherein the partial derivatives present
in the equation converts into drdinary derivatives.
du d(XY) . dX . _ _
[ For example %= o =Y I Sinee X=X(x)and Y=Y (y)}
2 The resulting equation involving ordinary derivatives is rearranged in such a way
that L.H.S is a function of x and R.H.S is a function of y (or vice-versa)
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S  We equate each side comprising ODEs to a common constant k.
[1t is obvious that if f(x)=g () then they must be equal to a constant.)

S Wesolve the ODEstoobtain X = X (x)and Y = Y (y)
< Substitutionof Xand Y into # = XY results in the required solution of the PDE.

Remark : If the given linear homogeneous PDE is of first order, we obviously get first order
ODEs and they get solved by the known method : Separation of Variables. However if the linear
homogenieous PDE is of order > 2 we have to employ the known procedure of solving a linear
homogeneous higher order ODE.

WORKED PROBLEMS

d d .
56. Solve é'l-l + 5{{ = 2(x+y)u, by the method of separation of variables.
¥ Y

>> Let u = XY,where X = X(x) & Y = Y(y) be thesolution of the given PDE.
d(XY) . g (XY)

Substituting into the given PDE we have, P 3y =2(x+y) XY
. X dY
ie., Y o X iy 2(x+y) XY.
. 1dX 1dy
Dividing by XY we have, X Jx + Y dy 2(x+y)
1 dX 1dY
or ﬁd—x—xz—?d—y+2y
Equating both sides to a common constant k we have,
1 dX 1 4y
XE—2x=k ; —?d—y+2y=k
1 dX 1 dy
or X 2x+k : Y dy =2y—k
dy
%=(2x+k)dx M ?=(2y—k)dy
dx dy
= J.Y= J(2x+k)dx+cl ; 7=I(2y—k)dy+fz
ie., log, X = x2+kx+c1 ; log, ¥ = yz—kyh:2
or X=8x2+kx+fl : Yzeyz—kyﬂ'z

¢ +¢ x2+kx+y2~ky _ ,t e
Hence u = XY =¢“17%2 ¢ andlet ¢ = ¢"1" 2
2 2
Thus u = ce® *Y *F(*~¥} is the required solution.
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y O 2 i

57. Solve v I +y = 0 Dy the method of separation of variables.
N !

dy
>> Let u = XY,where X = X(x) & Y = Y (y) be the solution of the given PDE.
Substituting into the given PDE we have,

) d
= —- Yy =
xzax(xywryzay(x y=0
_ dx dy
ie, XY + ¥ X 2y ="
Dividing by XY we have,
X Y

X dc Y dy
Equating both sides to a common constant k, we have
2dX o pay
X dx - Y dy
dX k dy k
— = — dx ; - =-—4d
X 2 Y 2
dX 1 dYy -1
= — =k | 5 dx+c ; ~ =k | — dy+c
X sz 1 Y Iyz yra
. - 1
ie., logEX=ch-—x—+c1 ; logeszg+c?_
(—k/x)+¢

or X=¢ L ;

Y = e(k/y)+c2

Hence u = XY = e1%% ¢ M"Y andlet ¢ = e17%
Thus u = ce® (¥~ 1% s the required solution.
. . : : . du dut
58. Solve by the method of separation of variables P 2 Py + 1 where
N

n(x,0) = 60>

»> Let u = XT, where X = X(x) & T = T(t) be the solution of the given PDE.

Substituting into the given PDE, we have T %);{ = 2X % + XT
i 1 dX 2dT
Dividing by XT we get, X e T a 1

Equating both sides to a common constant k we have,
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1 dX 2 dT

X dx = k frar 1=k
o 1dX_ 24T,
M X dx © T dar - "

1 1 k-1

XdX—kdx ; ?dT—-Tdt

1 1 k-1

=[x dax=k [dree; [ar="52 Jareg
. ) . o k-1
ie., og, X = kx+¢ ; log, T = 5 t+e,
or X = frre LT = k1) M2,
Hence u = XT =575 ekH(k—l”/z andlet ¢ = ¢1749

Thus o = ce® (k-1 F2 4o ihe general solution.

Furtherby data, u(x,0) = 6¢ 3 Thatis u = 66~ 3 when t = 0

Hence we have 6¢ % = ¢ ¢

Comparing we get ¢ = 6 and k = - 3.

Thus the required particular solution is given by u = 6 ¢~ 3 *~2¢
- : ) du  du )
&9. Solve by the method of separation of variables 4 . + o 3u, given that
' : A% Iy

(0, y) =2 ey
>> Let u = XY, where X = X(x) & Y = Y (y)be the solution of the given PDE.
Substituting into the given PDE we have,

4y i—f + X % = 3XY
Dividing by XY we have,
44X 1dy o d4dx . 14y
Xdx Y d X d Y dy
Equating both sides to a common constant k we have,
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. 4 dX 1 4dY
L & Py ay

1 k 1

EdX—zdx ; ?dY=(3-k)dy.

1 k 1

= [gaxeg faee 5 Jyar=0-0 fdy+e,
: _ kx ) 3
ie., Iogt,){—~z}t—+c1 ; log, Y = (3-k)y+c,

¥ = JlRd) e y = £3-F)yte,

Hence u = XY = ¢i1 76 A8+ B3=K1¥ andlet ¢ = €475
Thus u =u(x, y) = ce(kx/4)+(3_k)y is the general solution.
Further by data, #(0,y) = 2%

The general solution becomes 2™ = cel3 K1Y
Comparing wehave, ¢ = 2 and 3~k =5 or k =-12

Thus the required particular solutionis givenby u = 2 ol ~X/2)+5Y

60. Solve Uy = M by the method of separation of variables.

>> Let # = XY,where X = X(x) & Y = Y(y) bethesolution of the given PDE.

2
Then u " u —a—[a”‘];i[i(xm]

xy=axay=ax dy dx | dy
- 0 (Y| _dY dX
o o | XAy | T dy dx
futing into the g Y dX _
Substituting into the given PDE we have dy Coe =
g 1 dX 1dYy
Dividing by XY, we have ( 3 de . (Y dy} =
ldax 1
L X de ~ 1dY
Y dy

Equating both sides to a common constant k we have,
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li}g—k ;l—_k 1dy 1
X dx ; ldl_ OrYdy_k
Y dy
1 1 1
S{'dX—kdx : ?dy_i_c..dy
1 1 1
= J‘Ed‘x:k J‘dx"'fl} _I.'}“/“dY:-E jdy+52
fe., lOg(,X = kx+c1 ; log{g Y = % +
or X:gkx+fl : Y = E,(y/.‘r}ﬂ‘2
Hence i = XY = €c1+c2 {)kx k) and let ¢ = eCLJ'CQ

Thus  # = ce® ¥ (¥K) 5 the required solution.

6l. Solve: p y3 +q =0 by the method of separation of cariables.

>> We have the PDE - ][3 gi +x2 3; =0

Let z = XY, where X = X (x)and Y = Y ( ¥) be the solution of the given PDE.
Substituting into the given PDE we have,

sy X 25 94X
deerx Xdym()

Dividing by XY x y3 we have

Jlodx -1 4y
X dx By dy

1oax o1y
¥4 x dx ’ y%Y dy
1 2 R S Y-
deﬁkxdx ; YdY— ky'dy
13
= J‘[; = J-kx?‘dx+cl ; J)l( dY = — J.kfdwacz
3 4

Le., log X = k—;— +e, ; logy = “ky +c,
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3 4 .
X:ekx/3+£‘1 Y'—‘E_ky/4 +L2

ar

!

K273 - ky'sa

Hence z = XY = ¢ 1% and let ¢ =¢é17%

3 4
Thus z = ce*(¥/37¥7%) is the required solution.

62. Solve: xp = yq by the method of separation of variables.

oz dz
W X T =Y
>> We have the PDE : x =Y 3y

Let z = XY, where X = X(x) and Y = Y (y) be the solution of the given PDE.
Substituting into the given PDE we have,

aX dyY
xY E = yX d—V
Dividing by XY we have,
xdX_ydy
X dx Y dy
Equating both sides to a common constant k we have,
x dX _ . ydYy
X dx ’ Y dy
1 k 1 k
—XdX—;dx ; ?dY=§dy
1 dx 1 dy
= jidx=kj*;'+cl ; J.?dY:k'[y+C2
ie., log X = klogx+¢ ; logY = klogy+c,

Le., log X = log 2+ Tog ¢ ; logY = log W +log ¢
ie., log X = log (¢ xk) ; logY = log (¢, f)
= X = cl’xk B Y = c{f

Hencez = XY = ¢/ cz’xkyk andlet ¢ = ¢ ¢

Thus z=c(xy ) is the required solution.
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._2 -
- : , . , d° = z z
63. Solve by the method of separation of variables =~ 7 -2 o + gz =0

Iyt dy

>> Let z = XY, where X = X(x}and Y = Y (y)be the solution of the given PDE.
Substituting into the given PDE we have

82
(XY 2— XY)+~— XY)y=0
32 ) - ( (XY')
2
Le., Y?‘"——ZYd—X XEZ.MO
d x* dx dy
2
DividingbeYwehave,wl—d X 2lé~}-{~— 1 dY

X 4.2 °X dx Y dy

Equating both sides to a common constant k, we have

LaPX 24X, g Lldy
X 32 Xax ** Y dy
2

e, X 28 4% o0 and Likr-o
d 2 dx dy

Both are linear homogeneous ODE with constant coefficients.

AFEsare m*—2m—-k = 0 and m+k =20

—(=2) + VA+4k

2 and m = -k

roots of the AE are m =

ie., m=1%+vV1+k and m = -k
. solutionofODEsareX=cle{1+yl+k)x+cze(1_ T+k)x andY:c3e_ky

Vi+k)x xf1+k)xJ andY:cse“ky

ie., X=e* ¢ el +c, f

Hence z = XY = ¢?* (cl e ‘]+k)x+cze(" IJ'k)")-c_,,e_”“-'f

Let €)Cy = A and CyCy = B. Alsowe assume k > —1

Thus u = e* ¥ (A AVI+k)x g (- ‘1+k}x) is the required solution.

Note : Y can also be obtained by separating the variables like earlier problems.

64. Solve by the method of separation of variables,

- 2
,za"+,.,0“ sz

Y o 3e°
>> Letu = RT,whereR = R(r),and T = T (8)be the solution of the given PDE.
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Substituting into the given PDE we have,

r & (RT) +7 2 (RT) + i (RT) =10
3 dr 5 e°
2 2
Le., #Tdié{+rTg§+Rg——g=0
dr dr 46
# @R 7 dR 1 £T
Dividing by RT we have ® d_ri + i mdez
Equating both sides to a common constant k, we have
2 @R r dR 1 £2T
Ry "Rar=Fod g o=k
, #R  dR
ie., '2dr2 +r o= —kR =0 M
2
and "a—]-:g +kT =20 @)
de

(1) is in the form of Cauchy’s homogeneous linear equation. The DE is solved by
reducing into an ODE with constant coefficients using a substitution.

Put log » =t or r = ¢, Then we know that

JdAR _dR . > &R &R AR

ar ~ ar " P T
#R 4R dR
{1) becomes Pﬁ ST J+ T ~-kR =10
2
R
e, d—z—kRzo.
dt

This is a linear homogeneous ODE with constant coefficients and the A.E is
m -k = 0. Therefore, m = + Yk (k> 0)

P _
Hence R = € e\'kt+cze vkt

o AT
e, R=c ()W (o)™

T 3 .
or chlr\k+czr Nk since ¥ = ¢

t
Equation (2) 1s also a linear homogeneous ODE with constant coefficients.
AEis m’+k =0 o m=+v"k or m=ztivk

Hence T = €5 CO8 Vk 6 +¢ 1 sin vk 0
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Thus the required solution is given by

#=RT= [c r@+c r ﬂ) (c3cos vk © +c4sin\/?8)

2
65. Soloe by the method of separation of variables the PDE 92: = gz + 2 z subject
dx y

to the conditions (0, y) =0 and z A0, y) = e

>> Let z = XY, where X = X(x) & Y = Y {(y) be the solution of the given PDE.

2
Substituting into the given PDE we have, 3-2— (XY) = ;Ja (XY)+2XY
X Y

2
ie., Yi-_i_f _x &Y +2XY
dx dy

Dividing by XY we have 1aX =

Equating each side to a common constant k we have,

1 #x 1 dy
‘X“ dxz =k and ?EI}—+2wk
dz X dY

le.,

= kX =0 and ~= - (k=2)Y = 0
dx’ dy

These are linear homogeneous ODE with constant coefficients.
AEs are m° ~k = 0 and m—(k-2)=20

m=+vk and m = (k—-2) respectively, where k > 0
The solutions are X = ¢, ey cy e KX and Y = ¢ HAR=20y

~Vk ¥ -

T _ _ ,\"171 ,
IILI\CCZ-—XY—(Clt +0,¢ 3

ie. 2= (A B Ym0 here A = ¢ ¢y and B = ¢

! 263

Thus the general solution is given by
z=(Aekx+Be—\"Ex)e(k—2)y ()
Differentiating (1) partially w.r.t. x we have,

zxz\"'?(/lc\"k"—Bc’mw'\')e(k_z)j" o (2)

The given conditionsarez = 0 and z = ¢ Y when x = (.
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Hence (1) and (2) becomes

(A+B)y £5"D¥ = ¢ ... (3

@(A_B)e(k—ﬂy:e:ly ()
Since e(k_z)y cannot be zero we must have A+B = 0 or B = —A and using
this in (4) we get

2k A 7DV =
= k-2 =2and 2Vk A =
k=4and A =1/4. Also B = —1/4

Now (1) becomes

z = % (2 — &2y & = % sin b 2x ¢%Y

Thus the required particular solution of the PDE is given by
z = (1/2) sinh2x &Y

EXERCISES
Solve the following PDE by the method of separation of variables.
du du du du out ou
1 x — 9 _ _ _ u , du _
xax+yay 0 28x yay 0 32xax Syay 0
a—u §}£ = | d_u a_u — e 3x _
4. ax+ay—3(xz+y2)u 5. 8x+28y—u where u = 6¢ when y = 0
2 2 2 3 )
G-Q—4au W g g Tu Tu_ g T, T
ox? dy ax? 8y2 a2 dx gy
ANSWERS
k
Lou=c(xy) 2 u=ceyf 3. u =2y
4. u=cex3+y3+k(x“y} 5. u = 6e XY
6. u__.(Ae(2+\f4—_k)x _(2—~J4—k)x)e—ky k< 4

7. u=(c e+, \kl) (¢q cosry+c4smv—y), k>0

8. u=1|q pl1rVivkyx +c, L1 \‘“k)x][c COS\IWJ-{-C sinvky], k>0
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Q§ Unit-V
@

Integral Calculus

L‘S 1] Introduction
We are already conversant with the indefinite and definite integrals of a function of a
single independent variable along with the applications.

In this chapter the concept is discussed for a function of two and three independent
variables along with the applications.

Further we also discuss two special functions ‘Beta function” and ‘Gamma function’
defined in the form of definite integrals.

5.2 Multiple integrals

In this topic we discuss a repeated process of integration of a function of two and three
variables referred to as double integrals : .[ j f(x, y)dxdy and triple integrals :

.”If(x; v, z)dxdydz.

The principle of partial differentiation is adopted here in the process of integration.

For example :

i) Ij(x+y)dxdy: I(§+y-dey"£ yr+ﬁ x=%(x+y)
1

2 3
@ | [ [xyzdzayax
x=0 y=0:z=0

1 2 2 3 1 2 1 2
= | jxy{%} dydx = | jxy( dedx— [ [ayayax
0 x=0 y= ‘:.O =

0

I\Jl\D

x=0y=0 0

1

}J{gﬁdx:z }(—22— O]dx-‘)jxd‘c#9{%—{ ‘2‘

x={ x=0

38

il

TR
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Geometrical meaning

b d

_[ _[ f(x, y)dydx canbe regarded as the integral over the region bounded by the
xX=a y=c
rectangle withsides x =a, x = b, y =¢, y = d. 4}

The integral can also be evaluated by writing in the form | ;
d b '
_[ I f(x, y)dxdy and the value will be the same.

Y=c x=a

That is to say that when the limits are constant the integral |, .
can be evaluated in either way. )

IfRis aregion of the x —y plane bounded by the curves
y=y (x),y= ¥, (x) and the lines x=a,x=b 4}

we have
oo (X}
”f(x,y)dxdy:j ff(x,y)dydx
R x=a y:y}(x) 1

where y =y, (x) and y = y, (x) are the equations

of the lower and upper part of the boundary curve - E > ,
respectively being AEB and AFB. ‘

Further the integral can also be expressed in the form

da N

”f(x,y)dxdyzj Jf(x,y)dxdy
R y=cx=x(y)

where x = x; (¥), x = x,(y) aretheequations of the

\ 4

left and right part of the boundary curve respectively X
being CAD and CBD.

It should be observed that if a function of x isinvolved as alimitin the double integral
it corresponds to ¥ in which case the limits for x will be constant. Similar argument
holds good for a function of y in the limit and also in the case of triple integral
involving three variables x, v, z

A form of triple integral is as follows.
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i v, {(x) zg (v, ¥

I = J. I j flx, y, z) dzdydx
X=n y:}{l(A') z:zl(,\‘,_u)
WORKED PROBLEMS
1 Wy
1. Evaluate J Ixydydx
; X
1 Nis
>>  Wehave | = I Ixy dy dx
x={0 y=x

Vx

1 1
I= J.L{JZE} dx = j'%[(\f?)z—xz]dx
x={ X y=0

1

L .2
=§f:a(x~1 }da
0
1
1 2 .3
ZE(S[(A —-x")ydx

1 Ny
2. FEealuate j J. (xz+yz) dy dx
0 x
1 y
»>> Wehave | = _f j-{ x2+3/2)d‘1/ dx
=0 y=x -
'l 2 VB "
= j {x ]/+-'_—3--J ax
x={) WA
Lo 32 3
2 .
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3 3
.
7/2 5/2 41
¥ 1t 4
172 3572 3 4
v =0
_2, 2 1.9 _ 3
7 15 37 105 35

1 \Al—y2
>> Wehavefz_[ .[ x3y dx dy
y=0 x=0
7
1= Ty dy
y:[) h =10
1 . 1
1
1 I lftl-yz)zdv:E Iy(l—zyzw‘*)dy
y=0 y:O
1 1
y =10
4 61 1 1
RS A R S U U B B
412 2 6 0 412 2 6 24
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c b on

4. Lvalunte I I _[ (1‘2+ ]/21-:2} dz dydx

-c—-bh—-qa
s b a
> I:I I I(x2+y2+zz)dzd3/dx

Y=—cy==-b z=—4¢

C b 37
Z
= j J {x22+y22+7J dy dx
x=-cy=-b * R
< b
= _f j [xz(a+a)+_1/2(a+a)+(a3/3+a3/3)dedx
Xx=—cy=-b

f [2ax2y+2a(f/3)+(2a3/3)(y)]::_bdx

r=-¢

i

_[[2¢1x2(b+b)+2a(173/3+b3/3)+(2a3/3)(b+b)]dx

= [(4ab)(x3/3)+(4ab3/3)(x)+4a3b/3(x)It

= (4ab} (/3+/3)+(4ab%/3) (c+ ey + (407 b/3) (c+e)

8abc®  8ab® ¢  8a be Babc ( PR )
= ——— 4 -~ ot =
3 3 3 3

z + =
5. Evaluwke _[ I j (Aty+ o) diydvd:
-] ] _
x+z
J-(x+_1/ +z)dydxdz

r=-lxy=0y=x-z

e

>> 1=

1 X+ z
f J. {M]-F"‘*ﬁ-"j:‘ dxdz

Yy=x-z

]

z=-1 x=0
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1 z
1= Y (Ytz—-x—2z +l[ ¥tz (x—2)P 4o (3T E T ) dvde
I_IIO{ ( Jrz| (xtzP= (=2 4z )
1 z
:_[ _[( 2xz+2xz+222)dx dz
z=—1x=4
1 z
=j j(4x2+222)¢hdz
za=1x=0
! ) 1
= _{ [2(21'2)+2::(x)_}:”” de = I (223+223) iz
z=—1 z=="
! !
= _[42311’2 = [24]71 = {
-1

Thus I=

k] f ]
1 V14 V] - -y

6. Evaluate I I j xyz dz diydx
o 0 0

! 3
= [ = J J‘ [ Xyz i u”l;‘!l.'.‘{

0 et ted
= I
LoNT— =ty
| = ( l xul?;i dy dx
oy “oan
N

1 2 N .

= 5 j J. A Y-y iyl
TR RR P
i a5 ) 4";\;1 -

1 ¢ { Iy 3y AR |
= Nt e Xt =X

2 ‘{ 2 : 4 i v

v=0 =0
1 \-T’"T

: j 1 AR T T A
- Bl I PR - -
= Xy -2 YT — X J dx

2 4 [ <~ / \/ / .t/";(]

r=0
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] i 3 4 -~ o~
]—‘g ‘[2\(]*\”\;",“{] l,—\(l-\)'j.f\
N
1
! NI CORE T
= (23 =20 =274 207 - v 20 - 2y,
8
y e}
1
1 i R
- < '(‘ "42‘1"“‘\:-&,
’ Vo]
1
A a N
1 1§ J”f,r"_;
8t 2T 2
Sy = )
i1 1 T 1
O AR S
86 2 2 4

2 [ jd 2
1 \‘Flf.\f Vi-v -

' iz dy dx
7. Lovaluate I I J 7 ._..,‘,,,ZL."_‘;. =
0 0 0 V-a% -y -

{

| -
: =

fo 2

v s (!
;

N /”::\' T

We shall first integrate w.rt @ by treating a0 1 as constanis and et

. z 2 . .
ko= N1=3" =y for convenience,

1

Vi

1
= f [ (sin™! 1-sin" 0} dy dy
Ve s )
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1 V1
n -
=f [E—fﬂl dy dx
x=0 y=0 4
1 — 1
T Nl —x I 7
=5 j[y]n dxz-i jvl—x dx
x=0 x=0
A2 2
But Im dx = xNa-x < +E, sin” ! [E]
2 2 a
—— 1
H [ = n x\i'l—._x‘2w+} =1 _—!
ence [ =5 5 5 sin xJ
x=0
PR YR TR AN . 3 U S
2{0+2(sm 1-sin 0)}—2 55 =g

i A v i
8. Evaluate J j j YT dzdydy
@0
i X :l’+‘l/
>> Wehave I = J. et Y Ot dzdydx
v=0y=0z=0
§ y X+
I= J- J-(""+"%r¢'z }G " dy dx
x=0 y=0
I X
_ J' J-"l R YT dy dx
x=0y=0
a X
= j J.( AN G dy dx
x=0 y=0

v
1 _Jr y
5 J ¢ [e] dx
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I = I JLE;—Ji(.s"?x—l)——e""(e“'—l)ldx

J

g

9. Evaluate _[ J [ ¥y b=
0 G 0

n/2 asin@ | n2 -7 Va

> I= I J I rdzdrdd
0=0 r=0 z=0
n]? asij"lﬁ (2 2)/
= r[21° 77 " drde
0=0 r=0 [ ]z:O

n/2 asinf 5

= J- _[ 2 —rzdrde
6=0 r=0 ?

asin8 asing

0|
)

n/2
4 4
_ L a4
= jo (2 sin” 9 1 $in G]de
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m2
. 0o -1 n-3 T )
Using Jsm” 0do = -f--—“---- S Sas (ehere i 0s even)
0
: 1iat 1 & a3l nl‘ nut 3V hma
= - i - - o= - - | m
al 222 4 4221 & s 6l
Thus I = Sma /64
4 2 vz \17 \3-
10. Fkoaluate j J' dedxn'"
0 ¢ 0
4 23 vazoa?
= [ = J ‘- J‘d}/d\' dz
=0 by t)
4 2Nz - 4 24
AN ¢ R
= I _‘. (}/J dydz = J J’ Vdz —a” dr dz
s=0 y=0- Y 2= 10
Let 4z = @ (for conventience) so that 2 NZ =
4 I
I = [ J Na© - dvds
a0
1 ! A Y ) q
[ x Na~ =2 i =1 A h
= j i Pl 1 W \ dz
2. Z i d
D=0 s A =0
4 7
T .
= J. 0+ £2 { sin Y —sin lU)n’:
-=1{)
4
b
=5 J‘?_: dz
T =1
-
Ty 2 P
= —*l | = = — = &
Sl =5 tie-0) =8
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fog 2 X v+ log

1. Fealuate I J. f ¢ YT dzdydy
0 0 L
log2  x x+logy
>> I= I j I Y P dzdydx
x=0 y=0 z=0
log2 «x

241

:I I e”‘*y[ez]ﬂlogydydx
x=0 y=0 z=0

log2 «x

= J. Iexi—_l/[t,xﬂog}/_l]dydx But Elog_l/ =y
x=0y=0

log2 «x

= .[ j [ ye¥ e ¥ ] dydx
x=0 y=0

log 2

- [EZx(yey_gy)__ex_gy]x_ I
x=0 y=0
log 2

= j [L’zx{(xex*ex)—(o-*l)Jf—t’x(ex—l):ldx
xr=0

log 2
— j (x83x_e3x+€2x_821+ex)dx
x=0

— f (x€3x_€3x+€x)dx
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_8log2 4 s qy4(2-1)

3 9
_8log2 28 . _8log2 19
-3 9 B 9
Thus I=105256.,E
3 9
1 T1-—-x 1-vw-—9 b div ol
12. Evaluate I _[ i G 5
0 0 G (T+x4y+z)y
1 1-x 1-x-y
Let I = I J‘ J‘ dz dy dx
x=0 yzo z=0(1+X+y+Z)3

It
[—

1-x . 1-x—y
I { - } dy dx

2
x=0y=0 2(1+x+y+z) 220
1-x

T [t e

-<+
B 2(1+x+y)

1 r —
_I . —“*_i———-lx dx
- 87 2(x+y+1) L ’

1
1 1 1
=J —g(l—x)-z+57———}dx

c=olL x+1)
1
N 878 2(x+1)
x=01L
1
3x % 1
“—"[“F+Tg+ilog(x+l)}
x =0
3 1 1 -5
_—8+16+210g2-— 16+10g\fi—
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%221 Evaluation of “' Fix, yidvdy over the specific region R
R

We need to draw the befitting figure from the given description to identify the specific
region R. We have to then express

b y,(x)
I=f] f(x,yydedy = | | fex, yyayax (1)
R x=a y=yl(x)
d % (¥)
o  I={[ fx,yrdxay=| [ flx, yydxeay o 2)
R y=c¢ x=x(y)

I'is obtained by the evaluation of (1) or (2)
Remark : Carefully take a note of the content in article 5.21

E??’—lj Evaluation of double integral by changing the order of integration
< Given the integral in either of the forms as in article 2.22, say (1) we have toidentify
the region of integration R by writing the figure
(ie., the converse situation) and express (1) in the form (2).

=2 The evaluation of (2) will be the value of (1) on changing the order of integration.
This can be vice versa also.

< The advantage of this procedure is that, some times the double integral which is
difficult to be evaluated in the existing form becomes easy for evaluation on
changing the order of integration.

524 Evaluation of double integral by changing into polar form

< Given a double integral with limits we use the well known polar form of
substitution x = rcos®, y = rsin@.  This will give us x*+y° = 7,
y/x = tan O and it should be noted that dxdy = [ dr d8 where [ is the Jacobian
of the transformation given by

dx Odx

].Ma(x,y)_ dr 90 |
S (r,8) |8y dy|
dgr 9o

cos8 —-rsinB
sin 0 rcos §

=2 Thus dx dy = rdrd® and we need to change the limits of integration to », 9
suitably for the purpose of evaluation.

S  The method might be advantageous if the terms of the form ¥ + yz are involved
in f(x, y) and terms like Va? - y2 , Va® - %* etc. are involved in limits.
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Note : Some of the important and standard curves along with their equations and shape is
given below as it will be highly useful for working problems.

1. Straight lines

(i) x =0 and y = 0 are respectively the equations _
of y and x axis. —h

(i) x =¢; and y = ¢, are respectively the equations
of a line parallel to y-axisand a line parallel

to x axis. oo T
Voo,
Ay
FREI7AY
LAY
(iii) y = mx is a straight line passing through the origin
and in particular y = x is a straight line passing
through the origin subtending an angle 45° with
the x axis. 450
X

{iv) x/a+y/b = 1 is a straight line having x
intercept aand y infercept b ie., a
straight line passing through (2, 0) and (0, b)

of

o ol

o

2. Circle X+ y2 = a* isa circle with centre origin
and radius «. a
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3. Parabola v = kx is symmetrical about the pr
X - axis. :

K2 = ¢y 1s symmetrical about the y - axis.

4

1= Ay

Area, Volume and Surface area

1L jj dxdy = Area of the region R in the cartesian form.

R

2. _[ _[ rdrdd = Area of the region R in the polar form.
R

3. ”. I dxdydz = Volume of a solid.
v

4. If z = f(x, y) be the equation of a surface S then the surface area is given by

N ) o

where A is the region representing the projection of S on the xoy- plane.

5. Volume of a solid (in polars) obtained by the revolution of a curve enclosing an
area A about the initial line is given by

V= _[I2nr25in9drd8
A

WORKED PROBLEMS

Type-1 : Foaluation over a given region

13. Evaluate JI\';; dvdy where Ris the region borded by the coordinate aves and

I
the line x+y =1

>> R is the region bounded by x=0,y=0 being the coordinate axes and
X+y = 1 being a straight line through (1, 0) and (G, 1)
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Shaded portion in the figure is the region R.

From the figure we have |
1 1-x \\\;"‘
I= I_[xydxdy = J Ixydydx
R x=0 y=0
1 1-y vl
or I Ixydxdy
y=0 x=0
1 1-x 1 (0.
I:j x{%} dx:J- %(l—x)zdx
x=0 y =0 x=0

202 3 4| 24

Thus I=1/24

1 1-x
Remark : Given the integral I Ixy dydx we can write the figure to identify the
x=0y=0

region of integration. This being the region bounded by y = 0 (x-axis), y = 1—-x or
x+y = 1 aline passing through the points (1, 0) and (0, 1) embedded between the
lines x =0, x =1 x =0 tolbeing the horizontal strip can be changed to vertical
strip y = 0 to1 {constant limits) y = 0 to (1-x) being the vertical strip can be
changed to horizontal strip x = 0 to 1—y (variable limits). Thisis the principle of
changing the order of integration of a given double integral.

1 Loaluate jj;f dh dy o e et bowaded by Hre fivst qradrant of the ellipse
Vot y‘?/ b=

>> Shaded portion in the figure is the region (R) of integration. We observe that
x varies from 0 to 2 and we need to express xz/a2+y2/b2 =1 in the form

y = f(x).
e, P =1-(X20%) = (-

or y=(b/a)\1’.az—x2

Since y = 0 is the equation of x axis, we can say
2

that y varies fromQto (b/a) Va® - x
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a (b/a)Na"-x ‘rm_ iy
_” ydxdy='[ I ydy dx (D) o \ |
R x=0 y=0 '“*T/'“‘— - \“f:
. ﬁ (b/a)’;ar_—xz b2 a \\.\ {0,
- { ] dr=— [ (P-Pyax T
2 2ﬂ2 S
x=0 y=0 x=0 o
B 2 Bl 2 ] ab?
Y] Y 1| Y e Il
Thus I=ab?%/3
Note : From the figure, on a similar argument we can also have
b (abyNor = )2
a
ijdxdy: j f ydxdy=—3— . (2)
R y=0 x=0

Remark : Given the double integral in the form (1) writing the same in the form as in (2)
with the help of the figure is the change of order of integration.

. . ‘ o T2 2 ,
15. Lealuate ”-\'y dx dy taken over Hie region boumied by 1~/ a* +y /bE =1 and
x/atys/b =1

>> x varies fromOto a

L _bia-
a+b—10ry—a(a x)

PRy b P
—2+Lz:1 ory2=—2(a2—x2) /,/9%
a b a Ve \

b5 = f —
or y=7 2t - N A
a (b/a)Va —x/a

1= [ [ayaxay = | | xyayax
R x=0 b(a-x)a
(b/n)\‘az—xz

a a 2 )
I=I;{§J dx=% jx(b—z(az—xz)—%(a—x)z}dx
x=0 b{a—-x)a x=0 1% a
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P? o
I=—5 J(azx—x ma2x+2ax2—x3)dx
0
2 a
=-EE f2(ax2—x3)dx-
2a 0
_ﬁ&fﬂﬁy_ﬁ{é_ﬁ]_iﬁ
2 3 40 AL3 4 1

16. Evaluate _“-.\'y (x+y)dydy tekenmoverthe arcabetween y = vV oand Yy =x

>> Nowxzzxor x(x-1)=0 = x=0,x=1 Thisgives y =0,y =1
and hence the two curves intersectat thepoints (0, 0) and (1, 1)

= [ f e v

R
1 x
=J I(x2y+xy2)dydx
o 2
X Dyz Al
1 N N (O Ty ANE
3 s
_ xz{%} H{%_} dx RA 1
‘=0 .2 =L —
X y=x y=x R HJU'A

1
BESE AT
“l10 1A 15 24

r=0

1 1 1 1 3

10714715 24~ 56

Thus I=3/56
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Note : We can also write I in the form

1 Wy 3
zjl Ixy(x+y)dxdy; I=%
y=0x=y

17. Evaluate _[Ix%jdxdy where R is the vegion bounded by the lines
R
Y=x,y+x=2and y =10

>> Thelines y = x and y+x = 2 intersectat (1, 1)

1 2-y 1 3 Y
I= I_[x ydxdy = _[ Ixzydxdy jy{%—}z dy
y=0 x=y

y=0x=y

1 1
1 1
r=3 Jyl@-y?-ylay =§ U(S—'12y+6y2-y3-y3)dy
y=0 =0
1 43
_1 _ LI
1=3 Jesy-127+ 62 -2 ay AN
y=0
1 5]
I=H—£2—Qﬁ+§y4—zl- (0, 1)
3 2 5
=0
1 3 2 11
:'3[4 443 E} 30 (0,0
Thus I=11/30
Note : Alternative form of 1
1 x 2 2-x 1
2 -
=I _[xzydydx+J _[x ydydx ; =30
r=0y=0 =1 y=0

18. Loaluate J-J‘ xif dx dy where R is the region bounded by the x-avis, ordinate
R

v = 2a and the curve v* = 4ay.
e

>> x% = dgy ¥ is a parabola symmetrical about the y-axis. The point of intersection of
this curve with x = 24 is to be found.

Hence (2r)° = day or 4a° =4y oy =a



"
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The point of intersection is (2a, a)

20 x2/4a
I = '”xydxdy: j jxydydx
R ¥=0 y=0
2 {0, )
2n /4 2a
ﬁ 1 P
I'=1x dx = — _[ x| Ty dx -
- 2 =0 2__ 16a
x=0 Y x=0 (0. 01

Thus I=4'/3

a 2a
4
Note: Alternative formof I = '[ I xydxdy ; I = %
y=0x=Vday

- .5 o . . 2 2 3
19. Lovaluate _[_[x_:/ dv dyp ceer He positive yuadrant of the circle A"+ y" = a7

v F YRS
a a —Xx (.U.\[.'() !
I = I Ixydxdy = j jxydydx
R x=0 y=0
)
a 9 a —x
I= jx{%‘} dx
x=0 y=0
1 q —
1 SNt IEE o
=5 jx(a - X )dx—z{a 5~
=0 x=0

2

Thus I=4'/8
a N .
Note: Alternative formof 1 : _[ I xydxdy ; I= %
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2 The procedure is illustrated in the article 5.23 and in every problem (13 to 19) the
alternative form of the double integral is exactly the integral by changing the order
of integration.

= We complete the problem by evaluating the new form of the double integral.
WORKED MROBLEMS

‘l 4‘.‘ N ° o
20, Evaluate J j\y dy dv by changfine the order of nitegration.

0

1 Vx
>> I= I .[xy dydx
1=0 y=x

We need to first identify the region of integration R bounded by the curves
¥ = x, y = Vx between the lines x = 0, x = 1. We shall find the points of
intersection of ¥ = x and y = Vx by equating their R.H.S

e, x=VYx = ¥ =x or ¥(x=1)=07e, x=0,1 This will give us
¥ =0,y =1 and hence the points of intersectionare (0, 0) and (1, 1). Further
weknow that y = x is a straight line passing through the origin making an angle

45° with the x-axis and vy = Vx or !/2 = X is a parabola symmetrical about the
x-axis. The befitting figure indicating R is given.

[IEERAY

Al A
On changing the order of integration we must have (e TN
constant limits for ¥ and variable limits for x. From the P
figure we observe that y varies from 0 to 1 and x

varies from yz (~y=1Vx)toy —

[It should be noted that y = x and Nx are the lower and
tpper parts of the boundary of R whereas on changing the order

X = y2 and x =y represent the left and right parts of the
boundary of R]

Thus we have on changing the order of integration

1 ¥
:J J.xya’xdy
V*Ox=f
1 Yz Y , 1
:fl/[z] dy =5 Jy Ayt dy
=0 X=y y=90
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1
[T
e
[ Sa
!

o [
s
Il
N2
VS
N
b
[ RS
~ -
1]
S

Thus I=1/24

Remark : Referring to Problem-1 it may be seen that we have obtained the same answer by

direct evaluation.

11
21. Change the order of the integration and hence evaluate J. I dx dy
0 I

1 1

>> Let I=_[ J-dxdy
y=0x=\y

On changing the order of integration,

1
I=_[ J.dydx(x:\/?:xZ:y)
x=0y-=

|
Sy
-
S=
[
=

Il
e, ™

=

[

I

=

il
1
w[*,
L
= —

t
03| -

11
22. Evaluate by change of order of integration I j
0 x

1

1
>> LetI=j ‘[ ﬁdydx

x=0 y=x

(0.0)

e dyd
a7
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\-’Ar o x
— a.h
o I o
A
L
gl //
o
[
0. 0) o X
X 1
On changing the order of integration we have,
1 Yy
A | %dxdy
y=0 x=0 * +}/2
Put P+’ =t o 2xdx=dt or xdx = di/2
x 1 ¢dt
Wehave | —=—= dx reducingto = | = = Vt
J-,,' §+y2 g 2 J“\jt_
1
Y
1= _[ [Vx2+y2:lx=0 dy
y=0
1 ‘ 1
= [(2y-yydy = [ (\T-1)ydy
y=0 0
1
¥ 2-1
= (2-1) [ 2 L =2
Thus I= (\ff—l)/z
da 2+ax

23. Change the order of integration and hence evaluate _[ .[ xy dy dx
0 aa
da  y = 2Vax
>> Wehave, I = J. j xy dydx

x=0 y o ¥
2

Wehave% = 2+ax or x4 = 64a3x

ie., x(x3—64a3)=0 = x=0and x = 4
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From y = x*/4a weget y=0 and vy = 44
Thus the points of intersection of the parabolas y = x*/4a and y = 2ax are (0,0)
and (4a,4a)

On changing the order of integration we have y varying from 0 to 42 and

xvaryingfromyz/4a (-~ y= 2\/217)}0 2Vay (- Yy = /aa)
4 2Vay

Now I = _( j xy dx dy
¥y =0y = y'aa

4a 2 2 vay
X
- [vw3 Ly
y=20 x=y /dn
1 4
= = y| da . A
2 _IJ{ / 16a2} Y
y==0
- 6 4n
1 1 1y
= |4 -
3 16a”° 6
L y—o
1ﬁ4¢z[64“3] ! (10%76)1
= — - - {
2 3 96 o’ |
_1[2s6at 1084t | eda’
2 3 3 | 3
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23 Cliange the avder of integration and evaluete J
f
3 vd-y

>> Let I=I I (x+y) dxdy
y=0x=0

255

R r

_[ (v ) dy dy
iJ

The points of intersection of the parabola x = V4 —yorxl=4- y withy = 0 are
(2, 0) and with ¥ = 3 are (£1,0). Since y varies from 0 to 3 the points for
consideration are (2, 0) and ( 1, 0 ). The region is shown in the figure.

4!

(oo (2.0

_[ (x+y)dydx = I + I, (say)

(i &
On changing the order we have,
1 3 24—y
I#I _‘. (x+y)dydx+f
x=0 y=20 ¥=1 y=
1
Now I = _[ {:xywtgr dx
x =0 Y =
i
9 3x° 9x 3 9
= J. (3x+2JdX—[T+E“:l =§+§—6
x=0
2
2 -x
Next I, = I [xy#é dx
x =1 y=0
2
=%J. [2x(4—x2)+(4—x2)2] dx
x=1
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[ .5 4
11 8 5
_§L5~2—3+4x +16xT
1
1[31 15 56 241
‘§L5_2"?”2+16}“ 60
241 601
Now I—I1+12—6+ 0 -~ 60

Thus I = 601/60

1 2-x
25. Evaluate I J- xy dy dx by changing the order of integration.
0 2

2-x

jxy dy dx
2

=x

1
>> I:I

x=0

=

Toidentify the region of integration R, let us find the points of intersection of the curves
y = % and y=2-x

ie., to solve X =2-x

or Prx-2=0 i, (x-1)(x+2)=0 = x=1,x=-2

from y = X% (or y=2-x) weobtain y =1, y = 4

Thus (1, 1) and (-2, 4) are the points of intersection. Since the region is
bounded by x = 0 and x =1 the point (-2, 4) will be out of consideration.
Further y = X s a parabola symmetrical about the y-axis and y =2-x or
x+y =2 or x/2+y/2 = 1 is a straight line passing through (2, 0) and (0, 2).
With these findings the region is indicated in the figure.

On changing the order we must have constant limits for y and variable limits for x
to cover the same region.



MULTIPLE INTEGRALS

257
From the figure we can make out that the same will be in two parts.
1 Wy 2 2-y
T= _[ nydxdy+ _[ I xydedy = I +1, (say )
¥y=0 x=0 y=1x=0
1 Wy 1 1
x2 1
Now I = J-yIZEH dy = J-"zﬁdy= K(; =3
y=0 x=0 y=0
2 -y 2
2 1
L= f y{j dy = o [y(2-y)ay
y-—...l x=0 y:l
1 1 o T
. 3
ie., =3 I (4y—4y2+y )dyzE{Zyz—-—E,L+%}
y=1 y=1
. 1 4 1 5
ie., -22(4—1)—3(8—1)+4(16—1)}—§Z
1 5 3
I=Il+12—g+£—§
Thus I=3/8
2 V-
26. Evaluate j I(Z—-x)dy dx by chgnging the order of integration .
-2 0
2 Vd4-x
>> Wehave I = j _[ (2-x)dydx
x==-2 y=0

Here, vy = \i4—x2 or x2+y2 =4

This is a circle with centre origin and radius 2. y = 0 to

V4 — x2 is the upper half of the circle being bounded b
PP g y
the lines x = -2 and 2.

"Ii
y

On changing the order we must have y varying from

0t02 and x from ~Va~y* to V4-y? 2T
2 iy e
1= ] [ (2-x)dray
=0 o -Nzog

)y

I

!

f

i

N
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2 2
1= [2-2Va=y -0]ay =4 [N22 =2 ay
y=0 y=0
2

A 2
I= 4[%1&3—3@14 = 4(0+2sin" 1) = 8% =4n
0

2 2

7
i T-x

0 0

1-x AY

1
>> I = j J yzdydx (0, by NI

On changing the order of integration

we have from the figure
1 Vl——y2
1=]  [axay
y=0 x=0
1 \/—2 1
1-y
I= fyz{xl dy = [P N1-y" dy
y=0 =0 y=0
Put y = sin® .. dy = cos8dBand 6 varies from 0 to m/2
. i (1)(1)
. 2 2 T T R
Ize:[zm 8 cos” 646 = (1)(2) "2 =716 by reduction formula.
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- - . ¢ -
28. Change the ovder of integration and evaluate J J i di dx.
0 + 7

oo oo y '

>> I = ‘[ I E_.._ dydx .ﬂ}

y LT T
x=0 y=x

On changing the order we must have e

y=0toe~and x =0 to y x_,!-r,j,,,,,,,_

b y - = - LTI
p= | [ lavay - |2 y[x]gdy -
. —

e ¥ 0 =0

] 1

2,
29. Fwvaluate J. J xo” V" Vdy dy by changing the oviier of integration,
00

o x X ?}
>> Izj _fxe_x/y dy dx

x=0 y=0
The region is as shown in the figure.
On changing the order of integration ' e
wemusthave ¥ = 0 to o0 ; x = y t0 o T

I= _[ jxe_xz/y dxdy "_f—

y=0 x=y i RN}
=t .- %dx =dt or xdx = ydt/2

Alsowhen x =y, f =y andwhen x = =, t =
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1 _
=3 _[y e ¥dy.
y=0
Applying Bernoulli’s ruie,

RETCTRS) W (S PITAS) vty

1

[0-(0-1)] =3

a a

30. Show thatJ- I —"— dxdy = ’E

0 vy +

>> Note : We work the problem directly and also by changing the order of integration. The
advantage by changing the order can be clearly felt.

Method-1 (Direct evaluation)

dxdy

——
il

e, P
e, R

0 x-y r+1/2

= _[ %[Iog(x2+y2):lx=y dy

y=0
@
1
=5 J[log(a2+y2)—log(2y2)]dy
y=0
@
=% I[log(a2+y2)—iog2—210gy]dy
y=0
1 f
=5 Jlog(a +y2) 1dy—*~log2 y]o '[logy 1dy
y=0 y=0
a
1 2 1
=2 [log(a2+y2)-y]gzowgy-a7#dy -z alog2-{ylogy-y
1 I a*
= ~Zalog (24°)-2 1——— d ——lo 2— (aloga-a
5 14 log (247} - 21y y g2- (aloga-a)
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it
%(Iog2+210ga)—[y-az-%tan_l(y/a )} - -g—loglz-alogaﬂ:
0

-~.a+.az(tan_l 1—tan"10)+a =a-1n/4 = nasd
Thus I=mna4
Method-2 (By changing the order of integration)

The region bounded by the curves x = ¥, x = a embedded between the lines
¥ =0, y = a isshown in the figure

On changing the order x varies fromOto # and y varies from O to x.

(3 X
I—j J.x- L dy dx 4y y=x
A . -
0 0, a) 100, @)
= _[x.l[tan_l(y/x)]x dx
X y=0
x=0
i
= J-(tan"ll—tan_lo)dx _»
x=0 (0, 0) (a, 0) X

=)

T, R a_ Ta
Oj4dx_4[x10_4

12—y
31. Change the order of integration in _[ Ixy dx dy and evaluate.
0 Ny
1 2~y
>> = j Ixydxdy
y=0x=y
First let us find the points of intersection of the curves x = ¥y and x = 2-y
ie., ‘\/y_=2—y 0ry=(2—y)2 or y2—~5y+4:0
te., (y-1)(y-4)=0 = y=1and4 .. x =11, 12

The points of intersectionare (1, 1)(-1, 1)(2, 43(-2, 4)

Since y varies from 0 to 1 the point (1, 1) is of consideration. x = Vy or K = Yy
is a parabola symmetrical about the y-axis and x = 2-y or x+y = 2 is a line
passing through (2, 0) and (0, 2). The region is as shown in the figure.
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The integral on changing the order consist of two parts.

1 X 2 2-x
I= I nydydx+ I jxydydx:IlJrIZ(say)
x=0 y=0 x=1y=0
1 x2 1 ﬁ 2
_ _ AY e T
I = J J.xydydx = jx[ 5 I dx (0. 2) v=al
x=0y=0 x=0 y =0
1
5 IR ) S VA vl
ie., == J-x—dx RN Tt
2 ; > .
=0 .0 (1,0) 2.0y

x=1y=0 x =0
1 2
2
=5 Jx@-xPa
x=1
2
1 2.3
=5 Jax-e? e Pyax
x=1

il
| a1
)
[ 3]
| I— |
= )
|
bo
1
w|®,
s
+
1
0| R,
| I
— T

2 1 14 15 _ 5
12_(4.‘1)_§(8_1)+8(16_1)=3_3+8 =51

1 5 7

Hence I=hi*h = 1%21"u

bt
2

2 x
s> 1=[  [(PePydydx
x=1y=1
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The points of intersectionof ¥ = 1 with x =1, x = 2 are (1,1)(2, 1)
and the points of intersection of y = x> with x = 1, x=2are (1,1) (2, 4)
The region is indicated in the figure.

On changing the order we have from the figure y varying from 1 to 4 and

x—\/_( —x)tox-2

A}*
4 2 .
1= [(P+P)avay A4
y=1lx="y ) \:-;::
_j ?+y2x} dy v T
v Y (1. 1) (2. 1)
4 3/2 >
y {[guﬂ_[%wm]}dy L,
y=1
8 a2 4 /2 y4 /2 4
=3lyl+3l y3]___y5 B-cly I
s iy r ea 1y R 452y R g
= S(4-1) 45 (60-1) - (42 1) 221

8+42——(32 1)- (128—1)

5 62 254 _ 1006
h 15 7 10

Thus I = 1006/ 105

1 V2-x"
33. Change the ovder of integration in = dy dx and hence evaluate it.
U Ney
1 V2-x 47 n
vl
>> I:I _|- dedx S
x=0 y=x y2 (h1)

.

y = V2-x% or x2+y2 = 2 is a circle with centre
origin and radius V2. We shall find the points of
intersection with the line y = x.

pI) = x=*1
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e, (1,1) (=1, —1) are the points of intersection. Since x varies from 0 to 1
(1, 1) only is considered.

The region is shown in the figure.

The region on changing the order of integration is composed of two parts.

(i} y varying from0to1land x fromOto y
(ii) y varying from 1 toV2 and x varying from 0to V2~ y2

1 V2 N2-y

I=J I dx dy +
1 el gty
V2 Wd
Y

[\Jx2+y2 o dy+ j [mxﬂ)

y=1
2

)dj + I 2 -y)dy

y=1

dx dy

I| e, ll ——
/—-"\

N2
= (ﬁ—l)fydyﬂff[y]}{z——[%]
0 1

1
= (ﬁwi){gl+@(ﬂal)—(l—%]

2a an—rT a n+m
34. Show that J- J flv, y)dydx = I J f(x, y)dxdy
0 0 0 "“'m
>> Here we need to only change the order of integration.
2a 2ax - x
LHS = | I fx, y)dydx.

r=0

= V2ax-x* or y2=?ﬂx—x2 or x2+f—2ax=0
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ie., (x—.sz)2+(y—0)2 = 4°. This is a circle with centre {a, 0) and radius a. It is
evident that the circle passes through the origin having centre on the x-axis and radius
equal to a. The region is as shown in the figure.

On changing the order y varies from 0 to a.

Also (x-a) = =% = (x-a) = N~y

ie., x=at \’az—yz
a a+t \}az—yz

Thus we have I I f(x, y)dxdy = RH.S
¥=0 y=p-Va —y2

Type-3. Evaluation by changing tnto polars

The principle involved is analogous to the evaluation of a definite integral by a suitable
substitution. The method is explained in the article 5.24.

WORKED PROBLEMS

[=- T~

2 2
35. Eealuate j J‘ch('r R dy by changing to polar coordinates.

0 0
. 4y
>> Inpolarswehave x = rcos0, y = rsiné
X +y? =7 and dxdy = rdrd® Pl v)
Since x, y varies from 0 to oo, _
v also varies from 0 to oo 4
In the first quadrant 6 varies from0to n/2 /
2 e m - JT
_ 2
Thus I = _( Je " v drdo.
86=0r=0
dt .
Put 2=t - rdr= > ; t alsovaries from 0 to oe.
n/2 co d
t
_ —tHr
I= _[ _[e 5 ds
86=0 =0
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1 n/2 /2

_ 1 —t e -1 _1

=5 -t = -5 Jo-1)de = 516]
6=0 =0

Thus I=n/4

a Na —x°
36. Change the integral [

- 0
Same.

>>
Clearly 6 varies from 0 to m.

If x=rcos8, y =rsin0, x2+y2 = 7
ie., =7 = r=a

¥ varies from0to a.

The region of integration is as shown in the figure.

n2 _ T

¢

4

2 2
J Nv“+y° dy dx into polars and hence evaluate the

X ==t

Also  dxdy = rdrdé
n a
1=f [rorarao
86=0 r=0
- f {%} ds
6=0 0
3 3 3
a a na
=510 =3 (x-0)="5
Thus I=nd /3
a Vol -y
37. Ewvaluate I I y V'l + y2 dx dy by changing into polars.
0 0

¥
yVx®+y* dxdy
0

7
> I:j
y=0

X=

N 2 2. . : " : .
x =g —y2 or x +y2 = a° is a circle with cenne origin and radius a. Since y
varies from ( to a the region of integration is the first quadrant of the circle.

In polars we have x = rcos8, y = rsin8

ie., r2=a2 = r=a

21y = P
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Also x = 0, y = 0 willgive r = 0 and hence we can say that r varies from 0 to 4.
In the first quadrant 6 varies from 0 to n/2

Further we know that dx dy = r dr 40.

a q/2 o M2
I = J. Irsh19-r~rdrd8z J- Ir3sin6drdﬁ
r=0 =0 r=0 6=0
iq a 4 a 4
_i.3 w2 (36 _try e
I—Ir[ cose}o dr I r (0 l)dr—{‘iJ =7
r=0 r=0 0
Thus I=d'/4
1 T-xl-x-y
3. If u=yz/x, v = zx/y, w=ay’z, Frvaluate J- j J. du do dw
v=0 =0 z=0

by change of variable.

>>  We know that dudvdw = Jdxdydz where | is the Jacobian of the given
transformation.

We can obtain | =4

1 1T-x1-x-y 1 1-x
r=[ [ | adzayax =4f [{z1 7 Vayax
x=0y=0 z=0 x=0y=0
1 1-x 1-x
=4j _f(l—x y)dydx -4[ (y Xy — 'lé} dx
1—0y 0 r=0 =0

4 f (1-x)-x(1-x )—M }dx
x=0

1
2 [[2(1-x)-2x(1-2)=(1-x)]dx
r=0

Il

1
2 _[ (1-2x+2%)dx = 2[x—x2+(;\‘3/3)]é =
x=0

il

[SSHE ]
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Type-4. Applications of double and triple integrals

ILLUSTRATIVE PROBLEMS

1. Find the area of the ellipse x2/a%+ yz/bz = 1 by double infegration.

Area (A) = _[_[dxdy.
R
Referring to the figure in Problem - 14 we can write A= 4A1 where A1 is the area

in the first quadrant and with reference to the same figure we have,

1 (b/n)\.'nz—x2 a
44, = j' [ ayax =4 [ [y¥OV < ux

y=0 =0

}Q V22 _4b x\haz—-;z a? -1
= a ) x=0

a 2 2

=Tqab

_ | P } 4 4
ie., =

a 1q_ 4 a4 n
0+ (smlsm 0) 2 9o

Thus the required area (A ) = ma b sq. units.

Note : The area of the circle X+ = & by double integration is T a

This is a particular case of the example when b = a

2. Find by double integration the arvea enclosed bu the curve v = a{1+cos0)
between 8 = 0 and 0 = n

Area A = Ijrdrde where r varies from0to a(1+cos8) and 6 fromOto n

n a{l+cos0)

= | rarae
0=1{ r=0
T 72 {(1l+cos8) mn
1 2 2
A = I {E]’ de =3 Ja (1+cosH) 4o
8=0 0 8=0
2 n 5 14
A= "‘? [{2cos2(0/2)} a0 = 24 [cos® (8/2) d0

=0 0
Put 8/2 = ¢>, d9 = 2 d¢ and ¢ wvaries from 0 to /2
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n/2

24° _[ cos4¢-2d¢
0
/2

4 gcos‘icbdcb = 4a2-—i--

Tn
il

Sk

% « 7 by the reduction formula.

Thus the required area A = 31 a%/4 $Q. units.

3. Find the wvolume of the tetraltedron bounded by the planes
x=0,y=0,z=0,xa+yb+z/c =1

>> V= Ifjdxdydz

xfa+y/b+z/c =1 o z=c(l-x/a-y/b)
If z=0, then x/a+y/b=1 .. y="5b({1-x/a)
If z=0,y=0 then x =2

a b(l-x/a)c(l-x/a—y/b)
V=I I J dzdy dx
x=0 y=0 z=0
a b(l-x/a)
=j _[ c[l—%—%}a‘ydx (- jdz=z)
x=0 y=0

b{l=-x/a)
X ﬁ} dx
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V= _ﬂ_bg (0-1y = &€
6
Thus the requxred volume ( V} = abc/ 6 cubic units.

4. Find the volume generat:d by the revolution of the cardioide r = a(1+cos8)
about the initial line.

>> Volume of the solid of revolution in polars is givenby V = I J-2 12 sin 6 dr do.

A

Recollecting the nature and shape of the cardioide we have

ra(l+cost)

J J 2+ sin0 drdo -

= r=0

i 3 T (1+cos®)

J sin 8 46 o

= !: 3 Jr 0 ,_\ .

=—3 I a (1+c059) sin 6 46 a
Pit 1+c058—t soo-sin6dO = dt
If 0=0,t=2; 8=mn,t=0
0 3 2 3[ 4 3
V= Zna jt(—dt 2na 3, 2mna’ |t | _ 8ma
3 3 4| 3

Tiwus the required volume (V) = 87 4 /3 cubic units.
5. A pyramid is bounded by three coordinate planes and the plane x4 2y + 57 = 6
Computte the volume by double infegration.
> V = IIZ dx dy
Consider x+2y+3z = 6 or x/6+y/3+z/2 =1
We have z=2{1-(x/6)-(y/3)]
fz=0 (x/6)+(y3)=1 = y=3[1-(x/6)]
If z=0,y=0, thenx =6

6 3[1-{x/8)]

:I I 2{1-(x/6)—(y/3)] dy dx = 6, on evaluation.
=0 =0

Thus the required volume (V) = 6 cubic units.



MULTIPLE INTEGRALS 271

EXERCISES

Evaluate the following (1 to 5)

10.

1 2-x 1V1 4y

L waa I

X

A d-xa-x—y a Vit -2 \/az—yz—z?‘
_[ J j (P +2) dzdy dy 4 J. J‘ .fxdxdydz
0 0 0 0 0 0

X

¢ logy ¢

I I Ilog zdz dydx
1 1 Y

Evaluate I_(xyz dxdy over the region bounded by y = X2, y=0and x =1
R

Evaluate _”xy (x+y)dxdy taken over the region bounded by the parabolas
R

;/2=xandy:x2

Evaluate J. J X ydxdy over the region bounded by the curves y = x¥* and
R

y=x

Evaluate I ny dx dy where R is the region in the first quadrant bounded by the
R
line x+y =1

Evaluate I Ixz v dx dy taken over the region bounded by the y-axis, x-axis
R

and x2+y2 =1

Evaluate the following by changing the order of integration (11 to 15)

11.

a \v/a a 2vVax
J J‘ ( 2t _1/2 ) dy dx 12. j I X dx dy
G o 0 0
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44 T fitd
d
13. I I(a—x)dydx 14 I I %
-a 0 0 Jax ¥y o —-ax
a 2a-Xx
15. I J‘ xydydx
0 1‘2/a
ANSWERS
1. 3/8 2. w/4-log(1++2)
3. 2%/20 4. na*/16
5. (2—8 +13)/2 6. 1/24
7. 3/28 8. 1/35
9. 1/6 10. =/96
11. 23/28 +4a/20 12. 4a*/7
13. na/2 14. ma%/6
15. 3a*/8

5.3| Beta and Gamma functions

In this topic we define two special functions namely Beta function and Gamma function
by means of an integral and study the associated properties. These help us to evaluate
certain definite integrals which are either difficult or impossible to evaluate by various
known methods of integration.

5.31| Definitions
1

Bm,ny= [x"'(1-x)""ldx, (m, n>0) )
0

is called the Beta function.

T'(n) = Ie_xx"_idx,(n>0) Q)
0

is called the Gamma function.

These definitions can be put in the following alternative forms.

In (1) put x = sin® 8. dx = 2sin 6 cos 0 d0



